12 resultados para Temperature field

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

60.00% 60.00%

Publicador:

Resumo:

We derive a closed-form result for the leading thermal contributions which appear in the n-dimensional I center dot (3) theory at high temperature. These contributions become local only in the long wavelength and in the static limits, being given by different expressions in these two limits.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We present results for longitudinal dynamic hysteresis in single domain particles with uniaxial anisotropy. The combined influence of temperature, field-sweeping frequency, and field amplitude is discussed in detail. A novel and efficient numerical method is proposed, based on the direct solution of the infinite hierarchy of differential recurrence relations obtained from averaging over the stochastic realizations of the magnetic Langevin equation. (C) 2012 American Institute of Physics. [doi:10.1063/1.3676416]

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Micro-gas turbines are a good alternative for on-site power generation, since their operation is very reliable. The possibility of operating with various fuels increases versatility and, as a result, the usage of these devices. Focusing on a performance improvement of a tri-fuel low-cost micro-gas turbine, this work presents investigations of the inner flow of its combustion chamber. The aim of this analysis was the characterization of the flame structure by the temperature field of the chamber inner flow. The chamber was fuelled with natural gas. In the current chamber, a swirler and a reversed flow configuration were utilized to provide flame stabilization. The inner flow investigations were done with numerical analysis, which were compared to experimental data. The analysis of the inner flow was done with numerical simulations, which used the RSM turbulence model. A β-PDF equilibrium model was adopted to account for the turbulent combustion process. Different models of heat transfer were compared. Thermal radiation and specially heat conduction in the liner walls played significant roles on results.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Objective: To compare the polymerization status of mouse oocyte spindles exposed to various temperatures at various stages of meiosis. Design: Experimental animal study. Setting: University animal laboratory. Animal(s): CF1 mice. Intervention(s): Immature oocytes matured to metaphase I (MI), telophase I (TI), and metaphase II (MII) were incubated at 37 degrees C (control), room temperature (RT), or 4 degrees C for 0, 10, 30, and 60 minutes. Spindle analysis subsequently was performed using polarized field microscopy and immunocytochemistry. Spindles of TI and MII oocytes that underwent vitrification and warming were analyzed also by immunocytochemistry. Main Outcome Measure(s): Detection of polymerized meiotic spindles. Result(s): At RT, and after 60 minutes at 4 degrees C, a significant time-dependent decrease in the percentage of polymerized meiotic spindles was observed in MI and MII oocytes, but not in TI oocytes. The polymerization of TI spindles at 4 degrees C was similar to that of TI spindles at 4 degrees C that underwent vitrification and warming. Conclusion(s): Significant differences in the microtubule dynamics of MI, TI, and MII oocytes incubated at different temperatures were observed. In particular, meiotic spindles in TI oocytes exhibited less depolymerization than did metaphase spindles. (Fertil Steril (R) 2012; 97: 714-9. (C) 2012 by American Society for Reproductive Medicine.)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We present a comprehensive experimental and theoretical investigation of the thermodynamic properties: specific heat, magnetization, and thermal expansion in the vicinity of the field-induced quantum critical point (QCP) around the lower critical field H-c1 approximate to 2 T in NiCl2-4SC(NH2)(2). A T-3/2 behavior in the specific heat and magnetization is observed at very low temperatures at H = H-c1, which is consistent with the universality class of Bose-Einstein condensation of magnons. The temperature dependence of the thermal expansion coefficient at H-c1 shows minor deviations from the expected T-1/2 behavior. Our experimental study is complemented by analytical calculations and quantum Monte Carlo simulations, which reproduce nicely the measured quantities. We analyze the thermal and the magnetic Gruneisen parameters, which are ideal quantities to identify QCPs. Both parameters diverge at H-c1 with the expected T-1 power law. By using the Ehrenfest relations at the second-order phase transition, we are able to estimate the pressure dependencies of the characteristic temperature and field scales.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report new archeointensity data obtained from the analyses of baked clay elements (architectural and kiln brick fragments) sampled in Southeast Brazil and historically and/or archeologically dated between the end of the XVIth century and the beginning of the XXth century AD. The results were determined using the classical Thellier and Thellier protocol as modified by Coe, including partial thermoremanent magnetization (pTRM) and pTRM-tail checks, and the Triaxe protocol, which involves continuous high-temperature magnetization measurements. In both protocols, TRM anisotropy and cooling rate TRM dependence effects were taken into account for intensity determinations which were successfully performed for 150 specimens from 43 fragments, with a good agreement between intensity results obtained from the two procedures. Nine site-mean intensity values were derived from three to eight fragments and defined with standard deviations of less than 8%. The site-mean values vary from similar to 25 mu T to similar to 42 mu T and describe in Southeast Brazil a continuous decreasing trend by similar to 5 mu T per century between similar to 1600 AD and similar to 1900 AD. Their comparison with recent archeointensity results obtained from Northeast Brazil and reduced at a same latitude shows that: (1) the geocentric axial dipole approximation is not valid between these southeastern and northeastern regions of Brazil, whose latitudes differ by similar to 10 degrees, and (2) the available global geomagnetic field models (gufm1 models, their recalibrated versions and the CALSK3 models) are not sufficiently precise to reliably reproduce the non-dipole field effects which prevailed in Brazil for at least the 1600-1750 period. The large non-dipole contribution thus highlighted is most probably linked to the evolution of the South Atlantic Magnetic Anomaly (SAMA) during that period. Furthermore, although our dataset is limited, the Brazilian archeointensity data appear to support the view of a rather oscillatory behavior of the axial dipole moment during the past three centuries that would have been marked in particular by a moderate increase between the end of the XVIIIth century and the middle of the XIXth century followed by the well-known decrease from 1840 AD attested by direct measurements. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study the effects of Ohmic, super-Ohmic, and sub-Ohmic dissipation on the zero-temperature quantum phase transition in the random transverse-field Ising chain by means of an (asymptotically exact) analytical strong-disorder renormalization-group approach. We find that Ohmic damping destabilizes the infinite-randomness critical point and the associated quantum Griffiths singularities of the dissipationless system. The quantum dynamics of large magnetic clusters freezes completely, which destroys the sharp phase transition by smearing. The effects of sub-Ohmic dissipation are similar and also lead to a smeared transition. In contrast, super-Ohmic damping is an irrelevant perturbation; the critical behavior is thus identical to that of the dissipationless system. We discuss the resulting phase diagrams, the behavior of various observables, and the implications to higher dimensions and experiments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We prove that the hard thermal loop contribution to static thermal amplitudes can be obtained by setting all the external four-momenta to zero before performing the Matsubara sums and loop integrals. At the one-loop order we do an iterative procedure for all the one-particle irreducible one-loop diagrams, and at the two-loop order we consider the self-energy. Our approach is sufficiently general to the extent that it includes theories with any kind of interaction vertices, such as gravity in the weak field approximation, for d space-time dimensions. This result is valid whenever the external fields are all bosonic.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have conducted magnetoresistance measurements rho(T,H) in applied magnetic fields up to 18 T in Bi1.65Pb0.35Sr2Ca2Cu3O10+delta ceramic samples which were subjected to different uniaxial compacting pressures. The anisotropic upper critical fields H (c2)(T) were extracted from the rho(T,H) data, yielding and the out-of-plane superconducting coherence length xi (c) (0)similar to 3 . We have also estimated and xi (ab) (0) similar to 90 . In addition to this, a flux-line-lattice (FLL) melting temperature T (m) has been identified as a second peak in the derivative of the magnetoresistance d rho/dT data close to the superconducting transition temperature. An H (m) vs. T phase diagram was constructed and the FLL boundary lines were found to obey a temperature dependence H (m) ae(T (c) /T-1) (alpha) , where alpha similar to 2 for the sample subjected to the higher compacting pressure. A reasonable value of the Lindemann parameter c (L) similar to 0.29 has been found for all samples studied.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We consider a two-parameter family of Z(2) gauge theories on a lattice discretization T(M) of a three-manifold M and its relation to topological field theories. Familiar models such as the spin-gauge model are curves on a parameter space Gamma. We show that there is a region Gamma(0) subset of Gamma where the partition function and the expectation value h < W-R(gamma)> i of the Wilson loop can be exactly computed. Depending on the point of Gamma(0), the model behaves as topological or quasi-topological. The partition function is, up to a scaling factor, a topological number of M. The Wilson loop on the other hand, does not depend on the topology of gamma. However, for a subset of Gamma(0), < W-R(gamma)> depends on the size of gamma and follows a discrete version of an area law. At the zero temperature limit, the spin-gauge model approaches the topological and the quasi-topological regions depending on the sign of the coupling constant.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigate the canonical equilibrium of systems with long-range forces in competition. These forces create a modulation in the interaction potential and modulated phases appear at the system scale. The structure of these phases differentiate this system from monotonic potentials, where only the mean-field and disordered phases exist. With increasing temperature, the system switches from one ordered phase to another through a first-order phase transition. Both mean-field and modulated phases may be stable, even at zero temperature, and the long-range nature of the interaction will lead to metastability characterized by extremely long time scales.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A specific separated-local-field NMR experiment, dubbed Dipolar-Chemical-Shift Correlation (DIPSHIFT) is frequently used to study molecular motions by probing reorientations through the changes in XH dipolar coupling and T-2. In systems where the coupling is weak or the reorientation angle is small, a recoupled variant of the DIPSHIFT experiment is applied, where the effective dipolar coupling is amplified by a REDOR-like pi-pulse train. However, a previously described constant-time variant of this experiment is not sensitive to the motion-induced T-2 effect, which precludes the observation of motions over a large range of rates ranging from hundreds of Hz to around a MHz. We present a DIPSHIFT implementation which amplifies the dipolar couplings and is still sensitive to T-2 effects. Spin dynamics simulations, analytical calculations and experiments demonstrate the sensitivity of the technique to molecular motions, and suggest the best experimental conditions to avoid imperfections. Furthermore, an in-depth theoretical analysis of the interplay of REDOR-like recoupling and proton decoupling based on Average-Hamiltonian Theory was performed, which allowed explaining the origin of many artifacts found in literature data. (C) 2012 Elsevier Inc. All rights reserved.