3 resultados para THERMAL-BOUNDARY CONDITIONS
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
We investigate the interface dynamics of the two-dimensional stochastic Ising model in an external field under helicoidal boundary conditions. At sufficiently low temperatures and fields, the dynamics of the interface is described by an exactly solvable high-spin asymmetric quantum Hamiltonian that is the infinitesimal generator of the zero range process. Generally, the critical dynamics of the interface fluctuations is in the Kardar-Parisi-Zhang universality class of critical behavior. We remark that a whole family of RSOS interface models similar to the Ising interface model investigated here can be described by exactly solvable restricted high-spin quantum XXZ-type Hamiltonians. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Griffiths proposed a pair of boundary conditions that define a point interaction in one dimensional quantum mechanics. The conditions involve the nth derivative of the wave function where n is a non-negative integer. We re-examine the interaction so defined and explicitly confirm that it is self-adjoint for any even value of n and for n = 1. The interaction is not self-adjoint for odd n > 1. We then propose a similar but different pair of boundary conditions with the nth derivative of the wave function such that the ensuing point interaction is self-adjoint for any value of n.
Resumo:
In this work, we are interested in the dynamic behavior of a parabolic problem with nonlinear boundary conditions and delay in the boundary. We construct a reaction-diffusion problem with delay in the interior, where the reaction term is concentrated in a neighborhood of the boundary and this neighborhood shrinks to boundary, as a parameter epsilon goes to zero. We analyze the limit of the solutions of this concentrated problem and prove that these solutions converge in certain continuous function spaces to the unique solution of the parabolic problem with delay in the boundary. This convergence result allows us to approximate the solution of equations with delay acting on the boundary by solutions of equations with delay acting in the interior and it may contribute to analyze the dynamic behavior of delay equations when the delay is at the boundary. (C) 2012 Elsevier Inc. All rights reserved.