6 resultados para THERMAL LENS SPECTROMETRY

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Erbium doped tellurite glasses (TeO2 + Li2O + TiO2) were prepared by conventional melt-quenching method to study the influence of the Er3+ concentration on the luminescence quantum efficiency (η) at 1.5 µm. Absorption and luminescence data were used to characterize the samples, and the η parameter was measured using the well-known thermal lens spectroscopy. For low Er3+ concentration, the measured values are around 76%, and the concentration behavior of η shows Er-Er and Er-OH- interactions, which agreed with the measured lifetime values.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The present work reports on the thermo-optical study of germanate thin films doped with Au and Ag nanoparticles. Transmission Electron Microscopy images, UV-visible absorption and Micro-Raman scattering evidenced the presence of nanoparticles and the formation of collective excitations, the so called surface plasmons. Moreover, the effects of the metallic nanoparticles in the thermal properties of the films were observed. The thermal lens technique was proposed to evaluate the Thermal Diffusivity (D) of the samples. It furnishes superficial spatial resolution of about 100 mu m, so it is appropriate to study inhomogeneous samples. It is shown that D may change up to a factor 3 over the surface of a film because of the differences in the nanoparticles concentration distribution. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Modifications in low-density lipoprotein (LDL) have emerged as a major pathogenic factor of atherosclerosis, which is the main cause of morbidity and mortality in the western world. Measurements of the heat diffusivity of human LDL solutions in their native and in vitro oxidized states are presented by using the Z-Scan (ZS) technique. Other complementary techniques were used to obtain the physical parameters necessary to interpret the optical results, e. g., pycnometry, refractometry, calorimetry, and spectrophotometry, and to understand the oxidation phase of LDL particles. To determine the sample's thermal diffusivity using the thermal lens model, an iterative one-parameter fitting method is proposed which takes into account several characteristic ZS time-dependent and the position-dependent transmittance measurements. Results show that the thermal diffusivity increases as a function of the LDL oxidation degree, which can be explained by the increase of the hydroperoxides production due to the oxidation process. The oxidation products go from one LDL to another, disseminating the oxidation process and caring the heat across the sample. This phenomenon leads to a quick thermal homogenization of the sample, avoiding the formation of the thermal lens in highly oxidized LDL solutions. (C) 2012 Society of Photo-Optical Instrumentation Engineers (SPIE). [DOI: 10.1117/1.JBO.17.10.105003]

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Energy transfer (ET) and heat generation processes in Yb3+/Ho3+-codoped low-silica calcium aluminosilicate glasses were investigated using thermal lens (TL) and photoluminescence measurements looking for the emission around 2.0 μm. Stepwise ET processes from Yb3+ to Ho3+, upon excitation at 0.976 μm, produced highly efficient emission in the mid-infrared range at around 2.0 μm, with high fluorescence quantum efficiency (η1 ∼ 0.85 and independent of Ho3+ concentration) and relatively very low thermal loading (<0.4) for concentration up to 1.5% of Ho2O3. An equation was deduced for the description of the TL results that provided the absolute value of η1 and the number of emitted photons at 2.0 μm per absorbed pump photon by the Yb3+ ions, the latter reaching 60% for the highest Ho3+ concentration. These results suggest that the studied codoped system would be a promising candidate for the construction of photonic devices, especially for medical applications.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Soybean (Glycine max (Merrill) L) contains high content of aglycone isoflavones, as well as glucoside and malonylconjugates. In this work, the content of isoflavones in defatted soy flour was determined by reversed-phase high-performance liquid chromatography (RPHPLC) after alcoholic extraction in methanol/water mixture in the ratio 80:20 (v/v). It was observed that the heating treatment transformed the malonylglucosides into glucoside isoflavones. After heat treatment at 121 degrees C for 30 min, nearly all malonylisoflavones were converted into glucoside, but acetylisoflavones were not detected via RPHPLC analysis. Electrospray ionization mass spectrometry confirmed the presence of malonylisoflavones in heat-treated defatted soy flour by direct infusion analysis. (c) 2012 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We measured the K-41 thermal neutron absorption and resonance integral cross sections after the irradiation of KNO3 samples near the core of the IEA-R1 IPEN pool-type research reactor. Bare and cadmium-covered targets were irradiated in pairs with Au-Al alloy flux-monitors. The residual activities were measured by gamma-ray spectroscopy with a HPGe detector, with special care to avoid the K-42 decay beta(-) emission effects on the spectra. The gamma-ray self-absorption was corrected with the help of MCNP simulations. We applied the Westcott formalism in the average neutron flux determination and calculated the depression coefficients for thermal and epithermal neutrons due to the sample thickness with analytical approximations. We obtained 1.57(4) and 1.02(4) b, for thermal and resonance integral cross sections, respectively, with correlation coefficient equal to 0.39.