5 resultados para T-cell Epitope Prediction
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Paracoccidioidomycosis is a granulomatous pulmonary infection that is generally controlled by chemotherapy. The efficacy of treatment, however, is limited by the status of the host immune response. The inhibition of a Th-2 immunity or the stimulation of Th-1 cytokines generally increases the efficacy of antifungal drugs.(1) This has been achieved by immunization with an internal peptide of the major diagnostic antigen gp43 of Paracoccidioides brasiliensis. Peptide 10 (QTLIAIHTLAIRYAN) elicits an IFN-gamma rich Th-1 immune response that protects against experimental intratracheal infection by this fungus. The combination of chemotherapy with P10 immunization showed additive protective effect even after 30 d of infection or in anergic mice, rendering in general, increased production of IL-12 and IFN-gamma and reduction of IL-4 and IL-10. Immunotherapy with P10 even in the absence of simultaneous chemotherapy has been effective using various protocols, adjuvants, nanoparticles, P10-primed dendritic cells, and especially a combination of plasmids encoding the P10 minigene and IL-12. Gene therapy, in a long-term infection protocol succeeded in the virtual elimination of the fungus, preserving the lung structure, free from immunopathological side effects.
Resumo:
Paracoccidioidomycosis (PCM), caused by Paracoccidioides brasiliensis, is the most prevalent invasive fungal disease in South America. Systemic mycoses are the 10th most common cause of death among infectious diseases in Brazil and PCM is responsible for more than 50% of deaths due to fungal infections. PCM is typically treated with sulfonamides, amphotericin B or azoles, although complete eradication of the fungus may not occur and relapsing disease is frequently reported. A 15-mer peptide from the major diagnostic antigen gp43, named P10, can induce a strong T-CD4+ helper-1 immune response in mice. The TEPITOPE algorithm and experimental data have confirmed that most HLA-DR molecules can present P10, which suggests that P10 is a candidate antigen for a PCM vaccine. In the current work, the therapeutic efficacy of plasmid immunization with P10 and/or IL-12 inserts was tested in murine models of PCM. When given prior to or after infection with P. brasiliensis virulent Pb 18 isolate, plasmid-vaccination with P10 and/or IL-12 inserts successfully reduced the fungal burden in lungs of infected mice. In fact, intramuscular administration of a combination of plasmids expressing P10 and IL-12 given weekly for one month, followed by single injections every month for 3 months restored normal lung architecture and eradicated the fungus in mice that were infected one month prior to treatment. The data indicate that immunization with these plasmids is a powerful procedure for prevention and treatment of experimental PCM, with the perspective of being also effective in human patients.
Resumo:
Objective To determine variables that predict the rate of decline in fetal hemoglobin levels in alloimmune disease. Method Retrospective review of singleton pregnancies that underwent first and second intrauterine transfusions for treatment of fetal anemia because of maternal Rh alloimmunization in a tertiary referral center. Results Forty-one first intrauterine transfusions were performed at 26.1?weeks (standard deviation, SD, 4.6), mean volume of blood transfused was 44.4?mL (SD 23.5) and estimated feto-placental volume expansion was 51.3% (SD 14.5%). Between first and second transfusion, hemoglobin levels reduced on average 0.40?g/dl/day (SD 0.25). Stepwise multiple regression analysis demonstrated that this rate significantly correlated with hemoglobin levels after the first transfusion, the interval between both procedures, and middle cerebral artery systolic velocity before the second transfusion. Conclusion The rate of decline in fetal hemoglobin levels between first and second transfusions in alloimmune disease can be predicted by a combination of hemoglobin levels after the first transfusion, interval between both procedures, and middle cerebral artery systolic velocity before the second transfusion. (C) 2012 John Wiley & Sons, Ltd.
Resumo:
Evaluation of: Rodriguez D, Gonzalez-Aseguinolaza G, Rodriguez JR et al. Vaccine efficacy against malaria by the combination of porcine parvovirus-like particles and vaccinia virus vectors expressing CS of Plasmodium. PLoS ONE 7(4), e34445 (2012). Recently, a vaccine against malaria was successfully tested in a human Phase III trial. The efficacy of this vaccine formulation, based on the Plasmodium falciparum circumsporozoite protein, was approximately 50% and correlated with the presence of antibodies specific to the infective stages of the malaria parasites. Different strategies are being pursued to improve vaccine efficacy levels. One such strategy is the induction of specific cytotoxic T cells that can destroy the intracellular hepatocyte stages of the malaria parasite. In this study, a novel vaccination protocol was developed to elicit strong immune responses mediated by CD8(+) cytotoxic cells specific to the circumsporozoite protein. As proof-of-concept, the authors used the rodent malaria Plasmodium yoelii parasite. The vaccination strategy consisted of a heterologous prime-boost vaccination regimen involving porcine parvovirus-like particles for priming and the modified vaccinia virus Ankara for the booster immunization, both of which expressed the immunodominant CD8 epitope of the P. yoelii circumsporozoite protein. Results from this experimental model were extremely meaningful. This vaccination strategy led to a significant T-cell immune response mediated by CD8(+) multifunctional T effector and effector-memory cells. However, most importantly for the malaria vaccine development was the fact that following a sporozoite challenge, immunized mice eliminated more than 97% of the malaria parasites during the hepatocyte stages. These results confirm and extend a vast body of knowledge showing that a heterologous prime-boost vaccination strategy can elicit strong CD8(+) T-cell-mediated protective immunity and may increase the efficacy of malaria vaccines.
Resumo:
Abstract Background The implication of post-transcriptional regulation by microRNAs in molecular mechanisms underlying cancer disease is well documented. However, their interference at the cellular level is not fully explored. Functional in vitro studies are fundamental for the comprehension of their role; nevertheless results are highly dependable on the adopted cellular model. Next generation small RNA transcriptomic sequencing data of a tumor cell line and keratinocytes derived from primary culture was generated in order to characterize the microRNA content of these systems, thus helping in their understanding. Both constitute cell models for functional studies of microRNAs in head and neck squamous cell carcinoma (HNSCC), a smoking-related cancer. Known microRNAs were quantified and analyzed in the context of gene regulation. New microRNAs were investigated using similarity and structural search, ab initio classification, and prediction of the location of mature microRNAs within would-be precursor sequences. Results were compared with small RNA transcriptomic sequences from HNSCC samples in order to access the applicability of these cell models for cancer phenotype comprehension and for novel molecule discovery. Results Ten miRNAs represented over 70% of the mature molecules present in each of the cell types. The most expressed molecules were miR-21, miR-24 and miR-205, Accordingly; miR-21 and miR-205 have been previously shown to play a role in epithelial cell biology. Although miR-21 has been implicated in cancer development, and evaluated as a biomarker in HNSCC progression, no significant expression differences were seen between cell types. We demonstrate that differentially expressed mature miRNAs target cell differentiation and apoptosis related biological processes, indicating that they might represent, with acceptable accuracy, the genetic context from which they derive. Most miRNAs identified in the cancer cell line and in keratinocytes were present in tumor samples and cancer-free samples, respectively, with miR-21, miR-24 and miR-205 still among the most prevalent molecules at all instances. Thirteen miRNA-like structures, containing reads identified by the deep sequencing, were predicted from putative miRNA precursor sequences. Strong evidences suggest that one of them could be a new miRNA. This molecule was mostly expressed in the tumor cell line and HNSCC samples indicating a possible biological function in cancer. Conclusions Critical biological features of cells must be fully understood before they can be chosen as models for functional studies. Expression levels of miRNAs relate to cell type and tissue context. This study provides insights on miRNA content of two cell models used for cancer research. Pathways commonly deregulated in HNSCC might be targeted by most expressed and also by differentially expressed miRNAs. Results indicate that the use of cell models for cancer research demands careful assessment of underlying molecular characteristics for proper data interpretation. Additionally, one new miRNA-like molecule with a potential role in cancer was identified in the cell lines and clinical samples.