9 resultados para System monitoring

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

60.00% 60.00%

Publicador:

Resumo:

A complete census of planetary systems around a volume-limited sample of solar-type stars (FGK dwarfs) in the Solar neighborhood (d a parts per thousand currency signaEuro parts per thousand 15 pc) with uniform sensitivity down to Earth-mass planets within their Habitable Zones out to several AUs would be a major milestone in extrasolar planets astrophysics. This fundamental goal can be achieved with a mission concept such as NEAT-the Nearby Earth Astrometric Telescope. NEAT is designed to carry out space-borne extremely-high-precision astrometric measurements at the 0.05 mu as (1 sigma) accuracy level, sufficient to detect dynamical effects due to orbiting planets of mass even lower than Earth's around the nearest stars. Such a survey mission would provide the actual planetary masses and the full orbital geometry for all the components of the detected planetary systems down to the Earth-mass limit. The NEAT performance limits can be achieved by carrying out differential astrometry between the targets and a set of suitable reference stars in the field. The NEAT instrument design consists of an off-axis parabola single-mirror telescope (D = 1 m), a detector with a large field of view located 40 m away from the telescope and made of 8 small movable CCDs located around a fixed central CCD, and an interferometric calibration system monitoring dynamical Young's fringes originating from metrology fibers located at the primary mirror. The mission profile is driven by the fact that the two main modules of the payload, the telescope and the focal plane, must be located 40 m away leading to the choice of a formation flying option as the reference mission, and of a deployable boom option as an alternative choice. The proposed mission architecture relies on the use of two satellites, of about 700 kg each, operating at L2 for 5 years, flying in formation and offering a capability of more than 20,000 reconfigurations. The two satellites will be launched in a stacked configuration using a Soyuz ST launch vehicle. The NEAT primary science program will encompass an astrometric survey of our 200 closest F-, G- and K-type stellar neighbors, with an average of 50 visits each distributed over the nominal mission duration. The main survey operation will use approximately 70% of the mission lifetime. The remaining 30% of NEAT observing time might be allocated, for example, to improve the characterization of the architecture of selected planetary systems around nearby targets of specific interest (low-mass stars, young stars, etc.) discovered by Gaia, ground-based high-precision radial-velocity surveys, and other programs. With its exquisite, surgical astrometric precision, NEAT holds the promise to provide the first thorough census for Earth-mass planets around stars in the immediate vicinity of our Sun.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Background: This pilot study aimed to verify if glycemic control can be achieved in type 2 diabetes patients after acute myocardial infarction (AMI), using insulin glargine (iGlar) associated with regular insulin (iReg), compared with the standard intensive care unit protocol, which uses continuous insulin intravenous delivery followed by NPH insulin and iReg (St. Care). Patients and Methods: Patients (n = 20) within 24 h of AMI were randomized to iGlar or St. Care. Therapy was guided exclusively by capillary blood glucose (CBG), but glucometric parameters were also analyzed by blinded continuous glucose monitoring system (CGMS). Results: Mean glycemia was 141 +/- 39 mg/dL for St. Care and 132 +/- 42 mg/dL for iGlar by CBG or 138 +/- 35 mg/dL for St. Care and 129 +/- 34 mg/dL for iGlar by CGMS. Percentage of time in range (80-180 mg/dL) by CGMS was 73 +/- 18% for iGlar and 77 +/- 11% for St. Care. No severe hypoglycemia (<= 40 mg/dL) was detected by CBG, but CGMS indicated 11 (St. Care) and seven (iGlar) excursions in four subjects from each group, mostly in sulfonylurea users (six of eight patients). Conclusions: This pilot study suggests that equivalent glycemic control without increase in severe hyperglycemia may be achieved using iGlar with background iReg. Data outputs were controlled by both CBG and CGMS measurements in a real-life setting to ensure reliability. Based on CGMS measurements, there were significant numbers of glycemic excursions outside of the target range. However, this was not detected by CBG. In addition, the data indicate that previous use of sulfonylurea may be a potential major risk factor for severe hypoglycemia irrespective of the type of insulin treatment.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The Pierre Auger Observatory is a facility built to detect air showers produced by cosmic rays above 10(17) eV. During clear nights with a low illuminated moon fraction, the UV fluorescence light produced by air showers is recorded by optical telescopes at the Observatory. To correct the observations for variations in atmospheric conditions, atmospheric monitoring is performed at regular intervals ranging from several minutes (for cloud identification) to several hours (for aerosol conditions) to several days (for vertical profiles of temperature, pressure, and humidity). In 2009, the monitoring program was upgraded to allow for additional targeted measurements of atmospheric conditions shortly after the detection of air showers of special interest, e. g., showers produced by very high-energy cosmic rays or showers with atypical longitudinal profiles. The former events are of particular importance for the determination of the energy scale of the Observatory, and the latter are characteristic of unusual air shower physics or exotic primary particle types. The purpose of targeted (or "rapid") monitoring is to improve the resolution of the atmospheric measurements for such events. In this paper, we report on the implementation of the rapid monitoring program and its current status. The rapid monitoring data have been analyzed and applied to the reconstruction of air showers of high interest, and indicate that the air fluorescence measurements affected by clouds and aerosols are effectively corrected using measurements from the regular atmospheric monitoring program. We find that the rapid monitoring program has potential for supporting dedicated physics analyses beyond the standard event reconstruction.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Abstract Background A typical purification system that provides purified water which meets ionic and organic chemical standards, must be protected from microbial proliferation to minimize cross-contamination for use in cleaning and preparations in pharmaceutical industries and in health environments. Methodology Samples of water were taken directly from the public distribution water tank at twelve different stages of a typical purification system were analyzed for the identification of isolated bacteria. Two miniature kits were used: (i) identification system (api 20 NE, Bio-Mérieux) for non-enteric and non-fermenting gram-negative rods; and (ii) identification system (BBL crystal, Becton and Dickson) for enteric and non-fermenting gram-negative rods. The efficiency of the chemical sanitizers used in the stages of the system, over the isolated and identified bacteria in the sampling water, was evaluated by the minimum inhibitory concentration (MIC) method. Results The 78 isolated colonies were identified as the following bacteria genera: Pseudomonas, Flavobacterium and Acinetobacter. According to the miniature kits used in the identification, there was a prevalence of isolation of P. aeruginosa 32.05%, P. picketti (Ralstonia picketti) 23.08%, P. vesiculares 12.82%,P. diminuta 11.54%, F. aureum 6.42%, P. fluorescens 5.13%, A. lwoffi 2.56%, P. putida 2.56%, P. alcaligenes 1.28%, P. paucimobilis 1.28%, and F. multivorum 1.28%. Conclusions We found that research was required for the identification of gram-negative non-fermenting bacteria, which were isolated from drinking water and water purification systems, since Pseudomonas genera represents opportunistic pathogens which disperse and adhere easily to surfaces, forming a biofilm which interferes with the cleaning and disinfection procedures in hospital and industrial environments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background Recurrent nerve injury is 1 of the most important complications of thyroidectomy. During the last decade, nerve monitoring has gained increasing acceptance in several centers as a method to predict and to document nerve function at the end of the operation. We evaluated the efficacy of a nerve monitoring system in a series of patients who underwent thyroidectomy and critically analyzed the negative predictive value (NPV) and positive predictive value (PPV) of the method. Methods. NIM System efficacy was prospectively analyzed in 447 patients who underwent thyroidectomy between 2001 and 2008 (366 female/81 male; 420 white/47 nonwhite; 11 to 82 years of age; median, 43 years old). There were 421 total thyroidectomies and 26 partial thyroidectomies, leading to 868 nerves at risk. The gold standard to evaluate inferior laryngeal nerve function was early postoperative videolaryngoscopy, which was repeated after 4 to 6 months in all patients with abnormal endoscopic findings. Results. At the early evaluation, 858 nerves (98.8%) presented normal videolaryngoscopic features after surgery. Ten paretic/paralyzed nerves (1.2%) were detected (2 unexpected unilateral paresis, 2 unexpected bilateral paresis, 1 unexpected unilateral paralysis, 1 unexpected bilateral paralyses, and 1 expected unilateral paralysis). At the late videolaryngoscopy, only 2 permanent nerve paralyses were noted (0.2%), with an ultimate result of 99.8% functioning nerves. Nerve monitoring showed absent or markedly reduced electrical activity at the end of the operations in 25/868 nerves (2.9%), including all 10 endoscopically compromised nerves, with 15 false-positive results. There were no false-negative results. Therefore, the PPV was 40.0%, and the NPV was 100%. Conclusions. In the present series, nerve monitoring had a very high PPV but a low NPV for the detection of recurrent nerve injury. (C) 2011 Wiley Periodicals, Inc. Head Neck 34: 175-179, 2012

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Atmospheric conditions at the site of a cosmic ray observatory must be known for reconstructing observed extensive air showers. The Global Data Assimilation System (GDAS) is a global atmospheric model predicated on meteorological measurements and numerical weather predictions. GDAS provides altitude-dependent profiles of the main state variables of the atmosphere like temperature, pressure, and humidity. The original data and their application to the air shower reconstruction of the Pierre Auger Observatory are described. By comparisons with radiosonde and weather station measurements obtained on-site in Malargue and averaged monthly models, the utility of the GDAS data is shown. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Stochastic methods based on time-series modeling combined with geostatistics can be useful tools to describe the variability of water-table levels in time and space and to account for uncertainty. Monitoring water-level networks can give information about the dynamic of the aquifer domain in both dimensions. Time-series modeling is an elegant way to treat monitoring data without the complexity of physical mechanistic models. Time-series model predictions can be interpolated spatially, with the spatial differences in water-table dynamics determined by the spatial variation in the system properties and the temporal variation driven by the dynamics of the inputs into the system. An integration of stochastic methods is presented, based on time-series modeling and geostatistics as a framework to predict water levels for decision making in groundwater management and land-use planning. The methodology is applied in a case study in a Guarani Aquifer System (GAS) outcrop area located in the southeastern part of Brazil. Communication of results in a clear and understandable form, via simulated scenarios, is discussed as an alternative, when translating scientific knowledge into applications of stochastic hydrogeology in large aquifers with limited monitoring network coverage like the GAS.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

2-Methylisoborneol (MIB) and geosmin (GSM) are sub products from algae decomposition and, depending on their concentration, can be toxic: otherwise, they give unpleasant taste and odor to water. For water treatment companies it is important to constantly monitor their presence in the distributed water and avoid further costumer complaints. Lower-cost and easy-to-read instrumentation would be very promising in this regard. In this study, we evaluate the potentiality of an electronic tongue (ET) system based on non-specific polymeric sensors and impedance measurements in monitoring MIB and GSM in water samples. Principal component analysis (PCA) applied to the generated data matrix indicated that this ET was capable to perform with remarkable reproducibility the discrimination of these two contaminants in either distilled or tap water, in concentrations as low as 25 ng L-1. Nonetheless, this analysis methodology was rather qualitative and laborious, and the outputs it provided were greatly subjective. Also, data analysis based on PCA severely restricts automation of the measuring system or its use by non-specialized operators. To circumvent these drawbacks, a fuzzy controller was designed to quantitatively perform sample classification while providing outputs in simpler data charts. For instance, the ET along with the referred fuzzy controller performed with a 100% hit rate the quantification of MIB and GSM samples in distilled and tap water. The hit rate could be read directly from the plot. The lower cost of these polymeric sensors allied to the especial features of the fuzzy controller (easiness on programming and numerical outputs) provided initial requirements for developing an automated ET system to monitor odorant species in water production and distribution. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents preliminary results to determine small displacements of a global positioning system (GPS) antenna fastened to a structure using only one L1 GPS receiver. Vibrations, periodic or not, are common in large structures, such as bridges, footbridges, tall buildings, and towers under dynamic loads. The behavior in time and frequency leads to structural analysis studies. The hypothesis of this article is that any large structure that presents vibrations in the centimeter-to-millimeter range can be monitored by phase measurements of a single L1 receiver with a high data rate, as long as the direction of the displacement is pointing to a particular satellite. Within this scenario, the carrier phase will be modulated by antenna displacement. During a period of a few dozen seconds, the relative displacement to the satellite, the satellite clock, and the atmospheric phase delays can be assumed as a polynomial time function. The residuals from a polynomial adjustment contain the phase modulation owing to small displacements, random noise, receiver clock short time instabilities, and multipath. The results showed that it is possible to detect displacements of centimeters in the phase data of a single satellite and millimeters in the difference between the phases of two satellites. After applying a periodic nonsinusoidal displacement of 10 m to the antenna, it is clearly recovered in the difference of the residuals. The time domain spectrum obtained by the fast Fourier transform (FFT) exhibited a defined peak of the third harmonic much more than the random noise using the proposed third-degree polynomial model. DOI: 10.1061/(ASCE)SU.1943-5428.0000070. (C) 2012 American Society of Civil Engineers.