3 resultados para Synoptic meteorology.
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
The response of the Sao Paulo Continental Shelf (SPCS) to synoptic wind forcing has been analyzed. Two different methods are used for this purpose, one based on hydrographic data, bottom topography, and geographical characteristics, and a second on analyzing currentmeter data directly and using empirical orthogonal functions. Both methods show similar results for an essentially barotropic shelf. The SPCS response in the subinertial frequency band appears to be trapped on the continental shelf. Numerical experiments have also been carried out showing results that qualitatively agree with the observations, including the velocity component parallel to the coastline.
Resumo:
The multi-scale synoptic circulation system in the southeastern Brazil (SEBRA) region is presented using a feature-oriented approach. Prevalent synoptic circulation structures, or ""features,"" are identified from previous observational studies. These features include the southward-flowing Brazil Current (BC), the eddies off Cabo Sao Tome (CST - 22 degrees S) and off Cabo Frio (CF - 23 degrees S), and the upwelling region off CF and CST. Their synoptic water-mass (T-S) structures are characterized and parameterized to develop temperature-salinity (T-S) feature models. Following [Gangopadhyay, A., Robinson, A.R., Haley, PJ., Leslie, W.J., Lozano, C.j., Bisagni, J., Yu, Z., 2003. Feature-oriented regional modeling and simulation (forms) in the gulf of maine and georges bank. Cont. Shelf Res. 23 (3-4), 317-353] methodology, a synoptic initialization scheme for feature-oriented regional modeling and simulation (FORMS) of the circulation in this region is then developed. First, the temperature and salinity feature-model profiles are placed on a regional circulation template and objectively analyzed with available background climatology in the deep region. These initialization fields are then used for dynamical simulations via the Princeton Ocean Model (POM). A few first applications of this methodology are presented in this paper. These include the BC meandering, the BC-eddy interaction and the meander-eddy-upwelling system (MEUS) simulations. Preliminary validation results include realistic wave-growth and eddy formation and sustained upwelling. Our future plan includes the application of these feature models with satellite, in-situ data and advanced data-assimilation schemes for nowcasting and forecasting the SEBRA region. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
We measured the mixing ratios of NO, NO2, O-3, and volatile organic carbon as well as the aerosol light-scattering coefficient on a boat platform cruising on rivers downwind of the city of Manaus (Amazonas State, Brazil) in July 2001 (Large-Scale Biosphere-Atmosphere Experiment in Amazonia-Cooperative LBA Airborne Regional Experiment-2001). The dispersion and impact of the Manaus plume was investigated by a combined analysis of ground-based (boat platform) and airborne trace gas and aerosol measurements as well as by meteorological measurements complemented by dispersion calculations (Hybrid Single-Particle Lagrangian Integrated Trajectory model). For the cases with the least anthropogenic influence (including a location in a so far unexplored region similar to 150 km west of Manaus on the Rio Manacapuru), the aerosol scattering coefficient, sigma(s), was below 11 Mm(-1), NOx mixing ratios remained below 0.6 ppb, daytime O-3 mixing ratios were mostly below 20 ppb and maximal isoprene mixing ratios were about 3 ppb in the afternoon. The photostationary state (PSS) was not established for these cases, as indicated by values of the Leighton ratio, Phi, well above unity. Due to the influence of river breeze systems and other thermally driven mesoscale circulations, a change of the synoptic wind direction from east-northeast to south-southeast in the afternoon often caused a substantial increase of ss and trace gas mixing ratios (about threefold for sigma(s), fivefold for NOx, and twofold for O-3), which was associated with the arrival of the Manaus pollution plume at the boat location. The ratio F reached unity within its uncertainty range at NOx mixing ratios of about 3 ppb, indicating "steady-state" conditions in cases when radiation variations, dry deposition, emissions, and reactions mostly involving peroxy radicals (XO2) played a minor role. The median midday/afternoon XO2 mixing ratios estimated using the PSS method range from 90 to 120 parts per trillion (ppt) for the remote cases (sigma(s) < 11 Mm(-1) and NOx < 0.6 ppb), while for the polluted cases our estimates are 15 to 60 ppt. These values are within the range of XO2 estimated by an atmospheric chemistry box model (Chemistry As A Box model Application-Module Efficiently Calculating the Chemistry of the Atmosphere (CAABA/MECCA)-3.0).