3 resultados para Synchronized swimming
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
The effects of estradiol benzoate (EB) and estradiol cypionate (EC) on induction of ovulation after a synchronized LH surge and on fertility of Bos indicus females submitted to timed AI (TAI) were evaluated. In Experiment 1, ovariectomized Nelore heifers were used to evaluate the effect of EB (n = 5) and EC (n = 5) on the circulating LH profile. The LH surge timing (19.6 and 50.5 h; P = 0.001), magnitude (20.5 and 9.4 ng/mL; P = 0.005), duration (8.6 and 16.5 h; P = 0.001), and area under the LH curve (158.6 and 339.4 ng/mL; P = 0.01) differed between the EB and EC treatments, respectively. In Experiment 2 (follicular responses; n = 60) and 3 (pregnancy per AI; P/AI; n = 953) suckled Bos indicus beef cows submitted to an estradiol/progesterone-based synchronization protocol were assigned to receive one of two treatments to induce synchronized ovulation: 1 mg of EB im 24 h after progesterone (P4) device removal or 1 mg of EC im at P4 device removal. There was no difference (P > 0.05) between EB and EC treatments on follicular responses (maximum diameter of the ovulatory follicle, 13.1 vs. 13.9 mm; interval from progesterone device removal to ovulation, 70.2 vs. 68.5 h; and ovulation rate, 77.8 vs. 82.8%, respectively). In addition, P/AI was similar (P < 0.22) between the cows treated with EB (57.5%; 277/482) and EC (61.8%; 291/471). In conclusion, despite pharmacologic differences, both esters of estradiol administered either at P4 device removal (EC) or 24 h later (EB) were effective in inducing an LH surge which resulted in synchronized ovulations and similar P/AI in suckled Bos indicus beef cows submitted to TAI. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
Nitric oxide (NO) is an atypical neurotransmitter that has been related to the pathophysiology of major depression disorder. Increased plasma NO levels have been reported in depressed and suicidal patients. Inhibition of neuronial nitric oxide synthase (nNOS), on the other hand, induces antidepressant effects in clinical and pre-clinical trials. The mechanisms responsible for the antidepressant-like effects of nNOS inhibitors, however, are not completely understood. In this study, genomic and proteomic analyses were used to investigate the effects of the preferential nNOS inhibitor 7-nitroindazole (7-NI) on changes in global gene and protein expression in the hippocampus of rats submitted to forced swimming test (FST). Chronic treatment (14 days, i.p.) with imipramine (15 mg/kg daily) or 7-NI (60 mg/kg daily) significantly reduced immobility in the FST. Saturation curves for Serial analysis of gene expression libraries showed that the hippocampus of animals submitted to FST presented a lower number of expressed genes compared to non-FST stressed groups. Imipramine, but not 7-NI, reverted this effect. GeneGo analyses revealed that genes related to oxidative phosphorylation, apoptosis and survival controlled by HTR1A signaling and cytoskeleton remodeling controlled by Rho GTPases were significantly changed by FST. 7-NI prevented this effect. In addition, 7-NI treatment changed the expression of genes related to transcription in the cAMP response element-binding pathway. Therefore, this study suggests that changes in oxidative stress and neuroplastic processes could be involved in the antidepressant-like effects induced by nNOS inhibition.
Resumo:
DA SILVA, N. D. JR, T. FERNANDES, U. P. R. SOCI, A. W. A. MONTEIRO, M. I. PHILLIPS, and E. M. DE OLIVEIRA. Swimming Training in Rats Increases Cardiac MicroRNA-126 Expression and Angiogenesis. Med. Sci. Sports Exerc., Vol. 44, No. 8, pp. 1453-1462, 2012. Purpose: MicroRNA (miRNA)-126 is angiogenic and has two validated targets: Sprouty-related protein 1 (Spred-1) and phosphoinositol-3 kinase regulatory subunit 2 (PI3KR2), negative regulators of angiogenesis by VEGF pathway inhibition. We investigated the role of swimming training on cardiac miRNA-126 expression related to angiogenesis. Methods: Female Wistar rats were assigned to three groups: sedentary (S), training 1 (T1, moderate volume), and training 2 (T2, high volume). T1 consisted of 60 min.d(-1) of swimming, five times per week for 10 wk with 5% body overload. T2 consisted of the same protocol of T1 until the eighth week; in the ninth week, rats trained for two times a day, and in the 10th week, rats trained for three times a day. MiRNA and PI3KR2 gene expression analysis was performed by real-time polymerase chain reaction in heart muscle. We assessed markers of training, the cardiac capillary-fiber ratio, cardiac protein expression of VEGF, Spred-1, Raf-1/ERK 1/2, and PI3K/Akt/eNOS. Results: The cardiac capillary-fiber ratio increased in T1 (58%) and T2 (101%) compared with S. VEGF protein expression was increased 42% in T1 and 108% in T2. Cardiac miRNA-126 expression increased 26% (T1) and 42% (T2) compared with S, correlated with angiogenesis. The miRNA-126 target Spred-1 protein level decreased 41% (T1) and 39% (T2), which consequently favored an increase in angiogenic signaling pathway Raf-1/ERK 1/2. On the other hand, the gene expression of PI3KR2, the other miRNA-126 target, was reduced 39% (T1) and 78% (T2), and there was an increase in protein expression of components of the PI3K/Akt/eNOS signaling pathway in the trained groups. Conclusions: This study showed that aerobic training promotes an increase in the expression of miRNA-126 and that this may be related to exercise-induced cardiac angiogenesis, by indirect regulation of the VEGF pathway and direct regulation of its targets that converged in an increase in angiogenic pathways, such as MAPK and PI3K/Akt/eNOS.