3 resultados para Supersonic nozzles

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In a previous work El et al. (2006) [1] exact stable oblique soliton solutions were revealed in two-dimensional nonlinear Schrodinger flow. In this work we show that single soliton solution can be expressed within the Hirota bilinear formalism. An attempt to build two-soliton solutions shows that the system is "close" to integrability provided that the angle between the solitons is small and/or we are in the hypersonic limit. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the past few decades detailed observations of radio and X-ray emission from massive binary systems revealed a whole new physics present in such systems. Both thermal and non-thermal components of this emission indicate that most of the radiation at these bands originates in shocks. O and B-type stars and WolfRayet (WR) stars present supersonic and massive winds that, when colliding, emit largely due to the freefree radiation. The non-thermal radio and X-ray emissions are due to synchrotron and inverse Compton processes, respectively. In this case, magnetic fields are expected to play an important role in the emission distribution. In the past few years the modelling of the freefree and synchrotron emissions from massive binary systems have been based on purely hydrodynamical simulations, and ad hoc assumptions regarding the distribution of magnetic energy and the field geometry. In this work we provide the first full magnetohydrodynamic numerical simulations of windwind collision in massive binary systems. We study the freefree emission characterizing its dependence on the stellar and orbital parameters. We also study self-consistently the evolution of the magnetic field at the shock region, obtaining also the synchrotron energy distribution integrated along different lines of sight. We show that the magnetic field in the shocks is larger than that obtained when the proportionality between B and the plasma density is assumed. Also, we show that the role of the synchrotron emission relative to the total radio emission has been underestimated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Removal of Mg from aluminum scraps, known as demagging, has been widely applied in the,aluminum industry. This work discusses bubble-formation theories and magnesium kinetic removal from aluminum scraps using chlorine and inert gas fluxing. The interfacial area of the bubbles and residence time were estimated using a mathematical model. To inject gaseous chlorine, three types of nozzles were used with varying internal diameter. In addition, a porous plug, as well as varying input chlorine flow and concentration were used. The use of lower chlorine concentration improves efficiency because the interfacial tension is reduced therefore, more and smaller bubbles are formed. The model proposed herein is consistent with the experimental data. [doi:10.2320/matertrans.M2011256]