20 resultados para Superheating reactors.

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work evaluates the spatial distribution of normalised rates of droplet breakage and droplet coalescence in liquidliquid dispersions maintained in agitated tanks at operation conditions normally used to perform suspension polymerisation reactions. Particularly, simulations are performed with multiphase computational fluid dynamics (CFD) models to represent the flow field in liquidliquid styrene suspension polymerisation reactors for the first time. CFD tools are used first to compute the spatial distribution of the turbulent energy dissipation rates (e) inside the reaction vessel; afterwards, normalised rates of droplet breakage and particle coalescence are computed as functions of e. Surprisingly, multiphase simulations showed that the rates of energy dissipation can be very high near the free vortex surfaces, which has been completely neglected in previous works. The obtained results indicate the existence of extremely large energy dissipation gradients inside the vessel, so that particle breakage occurs primarily in very small regions that surround the impeller and the free vortex surface, while particle coalescence takes place in the liquid bulk. As a consequence, particle breakage should be regarded as an independent source term or a boundary phenomenon. Based on the obtained results, it can be very difficult to justify the use of isotropic assumptions to formulate particle population balances in similar systems, even when multiple compartment models are used to describe the fluid dynamic behaviour of the agitated vessel. (C) 2011 Canadian Society for Chemical Engineering

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study evaluated the effects of the organic loading rate (OLR) and pH buffer addition on hydrogen production in two anaerobic fluidized bed reactors (AFBRs) operated simultaneously. The AFBRs were fed with glucose, and expanded clay was used as support material. The reactors were operated at a temperature of 30 degrees C, without the addition of a buffer (AFBR1) and with the addition of a pH buffer (AFBR2, sodium bicarbonate) for OLRs ranging from 19.0 to 140.6 kg COD m(-3) d(-1) (COD: chemical oxygen demand). The maximum hydrogen yields for AFBR1 and AFBR2 were 2.45 and 1.90 mol H-2 mol(-1) glucose (OLR of 84.3 kg COD m(-3) d(-1)), respectively. The highest hydrogen production rates were 0.95 and 0.76 L h(-1) L-1 for AFBR1 and AFBR2 (OLR of 140.6 kg COD m(-3) d(-1)), respectively. The operating conditions in AFBR1 favored the presence of such bacteria as Clostridium, while the bacteria in AFBR2 included Clostridium, Enterobacter, Klebsiella, Veillonellaceae, Chryseobacterium, Sporolactobacillus, and Burkholderiaceae. Copyright (C) 2012, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Autotrophic denitrification coupled with sulfide oxidation represents an interesting alternative for the simultaneous removal of nitrate/nitrite and sulfide from wastewaters. The applicability of such bioprocess is especially advantageous for the post treatment of effluents from anaerobic reactors, since they usually produce sulfides, which can be used as endogenous electron donor for autotrophic denitrification. This study evaluated the effect of sulfide concentration on this bioprocess using nitrate and nitrite as electron acceptors in vertical fixed-bed reactors. The results showed that intermediary sulfur compounds were mainly produced when excess of electron donor was applied, which was more evident when nitrate was used. Visual evidences suggested that elemental sulfur was the intermediary compound produced. There was also evidence that the elemental sulfur previously formed was being used when sulfide was applied in stoichiometric concentration relative to nitrate/nitrite. Nitrite was more readily consumed than nitrate. For both electron acceptors and sulfide concentrations tested, autotrophic denitrification was not affected by residual heterotrophic denitrification via endogenic activity, occurring as a minor additional nitrogen removal process. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nitrogen removal coupled with sulfide oxidation has potential for the treatment of effluents from anaerobic reactors because they contain sulfide, which can be used as an endogenous electron donor for denitrification. This work evaluated the intrinsic kinetics of sulfide-oxidizing autotrophic denitrification via nitrate and nitrite in systems containing attached cells. Differential reactors were fed with nitrified synthetic domestic sewage and different sulfide concentrations. The intrinsic kinetic parameters of nitrogen removal were determined when the mass transfer resistance was negligible. This bioprocess could be described by a half-order kinetic model for biofilms. The half-order kinetic coefficients ranged from 0.425 to 0.658 mg N-1/2 L-1/2 h(-1) for denitrification via nitrite and from 0.190 to 0.609 mg N-1/2 L-1/2 h(-1) for denitrification via nitrate. In this latter, the lower value was due to the use of electrons donated from intermediary sulfur compounds whose formation and subsequent consumption were detected. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The objective of this research was to study phenol degradation in anaerobic fluidized bed reactors (AFBR) packed with polymeric particulate supports (polystyrene - PS, polyethylene terephthalate - PET, and polyvinyl chloride - PVC). The reactors were operated with a hydraulic retention time (HRT) of 24 h. The influent phenol concentration in the AFBR varied from 100 to 400 mg L-1, resulting in phenol removal efficiencies of similar to 100%. The formation of extracellular polymeric substances yielded better results with the PVC particles; however, deformations in these particles proved detrimental to reactor operation. PS was found to be the best support for biomass attachment in an AFBR for phenol removal. The AFBR loaded with PS was operated to analyze the performance and stability for phenol removal at feed concentrations ranging from 50 to 500 mg L-1. The phenol removal efficiency ranged from 90-100%.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this work was to identify groups of microorganisms that are capable of degrading organic matter utilizing sulfate as an electron acceptor. The assay applied for this purpose consisted of running batch reactors and monitoring lactate consumption, sulfate reduction and sulfide production. A portion of the lactate added to the batch reactors was consumed, and the remainder was converted into acetic, propionic and butyric acid after 111 hours of operation These results indicate the presence of sulfate-reducing bacteria (SRB) catalyzing both complete and incomplete oxidation of organic substrates. The sulfate removal efficiency was 49.5% after 1335 hours of operation under an initial sulfate concentration of 1123 mg/L. The SRB concentrations determined by the most probable number (MPN) method were 9.0x10(7) cells/mL at the beginning of the assay and 8.0x10(5) cells/mL after 738 hours of operation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The objective of the present study was to compare the performance of three serological tests for diagnosis of Brucella abortus infections in buffaloes (Bubalus bubalis). Serum samples collected from 696 adult females were submitted to the competitive enzyme-linked immunosorbent assay (ELISAC), (I-ELISA), fluorescence polarization test (FPA), 2-mercaptoethanol test (2-ME) and complement fixation test (CFT). The gold standard was the combination of CFT and 2-ME, considering as positive the reactors in both CFT and 2-ME, and as negative those non-reactors. ROC analyses were done for C-ELISA, I-ELISA and FPA and the Kappa agreement index were also calculated. The best combinations of relative sensitivity (SEr) and relative specificity (SPr) and Kappa were given by C-ELISA (96.9%, 99.1%, and 0.932, respectively) and FPA (92.2%, 97.6 and 0.836, respectively). The C-ELISA and FPA were the most promising confirmatory tests for the serological diagnosis of brucellosis in buffaloes, and for these tests, cut-off values for buffaloes may be the same as those used for bovines.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this research was to evaluate the bioremediation of a soil contaminated with wastes from a plasticizers industry, located in Sao Paulo, Brazil. A 100-kg soil sample containing alcohols, adipates and phthalates was treated in an aerobic slurry-phase reactor using indigenous and acclimated microorganisms from the sludge of a wastewater treatment plant of the plasticizers industry (11gVSS kg(-1) dry soil), during 120 days. The soil pH and temperature were not corrected during bioremediation; soil humidity was corrected weekly to maintain 40%. The biodegradation of the pollutants followed first-order kinetics; the removal efficiencies were above 61% and, among the analyzed plasticizers, adipate was removed to below the detection limit. Biological molecular analysis during bioremediation revealed a significant change in the dominant populations initially present in the reactor.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The theoretical E-curve for the laminar flow of non-Newtonian fluids in circular tubes may not be accurate for real tubular systems with diffusion, mechanical vibration, wall roughness, pipe fittings, curves, coils, or corrugated walls. Deviations from the idealized laminar flow reactor (LFR) cannot be well represented using the axial dispersion or the tanks-in-series models of residence time distribution (RTD). In this work, four RTD models derived from non-ideal velocity profiles in segregated tube flow are proposed. They were used to represent the RTD of three tubular systems working with Newtonian and pseudoplastic fluids. Other RTD models were considered for comparison. The proposed models provided good adjustments, and it was possible to determine the active volumes. It is expected that these models can be useful for the analysis of LFR or for the evaluation of continuous thermal processing of viscous foods.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effect of substrate (glucose) concentration on the stability and yield of a continuous fermentative process that produces hydrogen was studied. Four anaerobic fluidized bed reactors (AFBRs) were operated with a hydraulic retention time (HRT) from 1 to 8 h and an influent glucose concentration from 2 to 25 gL(-1). The reactors were inoculated with thermally pre-treated anaerobic sludge and operated at a temperature of 30 degrees C with an influent pH around 5.5 and an effluent pH of about 3.5. The AFBRs with a HRT of 2 h and a feed strength of 2, 4, and 10 gL(-1) showed satisfactory H-2 production performance, but the reactor fed with 25 gL(-1) of glucose did not. The highest hydrogen yield value was obtained in the reactor with a glucose concentration of 2 gL(-1) when it was operated at a HRT of 2 h. The maximum hydrogen production rate value was achieved in the reactor with a HRT of 1 h and a feed strength of 10 gL(-1). The AFBRs operated with glucose concentrations of 2 and 4 gL(-1) produced greater amounts of acetic and butyric acids, while AFBRs with higher glucose concentrations produced a greater amount of solvents.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The classic conservative approach for thermal process design can lead to over-processing, especially for laminar flow, when a significant distribution of temperature and of residence time occurs. In order to optimize quality retention, a more comprehensive model is required. A model comprising differential equations for mass and heat transfer is proposed for the simulation of the continuous thermal processing of a non-Newtonian food in a tubular system. The model takes into account the contribution from heating and cooling sections, the heat exchange with the ambient air and effective diffusion associated with non-ideal laminar flow. The study case of soursop juice processing was used to test the model. Various simulations were performed to evaluate the effect of the model assumptions. An expressive difference in the predicted lethality was observed between the classic approach and the proposed model. The main advantage of the model is its flexibility to represent different aspects with a small computational time, making it suitable for process evaluation and design. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Alternative fuel sources have been extensively studied. Hydrogen gas has gained attention because its combustion releases only water, and it can be produced by microorganisms using organic acids as substrates. The aim of this study was to enrich a microbial consortium of photosynthetic purple non-sulfur bacteria from an Upflow Anaerobic Sludge Blanket reactor (UASB) using malate as carbon source. After the enrichment phase, other carbon sources were tested, such as acetate (30 mmol l(-1)), butyrate (17 mmol l(-1)), citrate (11 mmol l(-1)), lactate (23 mmol l(-1)) and malate (14.5 mmol l(-1)). The reactors were incubated at 30 degrees C under constant illumination by 3 fluorescent lamps (81 mu mol m(-2) s(-1)). The cumulative hydrogen production was 7.8, 9.0, 7.9, 5.6 and 13.9 mmol H-2 l(-1) culture for acetate, butyrate, citrate, lactate and malate, respectively. The maximum hydrogen yield was 0.6, 1.4, 0.7, 0.5 and 0.9 mmol H-2 mmol(-1) substrate for acetate, butyrate, citrate, lactate and malate, respectively. The consumption of substrates was 43% for acetate, 37% for butyrate, 100% for citrate, 49% for lactate and 100% for malate. Approximately 26% of the clones obtained from the Phototrophic Hydrogen-Producing Bacterial Consortium (PHPBC) were similar to Rhodobacter, Rhodospirillum and Rhodopseudomonas, which have been widely cited in studies of photobiological hydrogen production. Clones similar to the genus Sulfurospirillum (29% of the total) were also found in the microbial consortium. Copyright (C) 2012, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper reports on results obtained from experiments carried out in an acidogenic anaerobic reactor aiming at the optimization of hydrogen production by altering the degree of back-mixing. It was hypothesized that there is an optimum operating point that maximizes the hydrogen yield. Experiments were performed in a packed-bed bioreactor by covering a broad range of recycle ratios (R) and the optimum point was obtained for an R value of 0.6. In this operating condition the reactor behaved as 8 continuous stirred-tank reactors in series and the maximum yield was 4.22 mol H-2 mol sucrose(-1). Such optimum point was estimated by deriving a polynomial function fitted to experimental data and it was obtained as the conjugation of three factors related to the various degrees of back-mixing applied to the reactor: mass transfer from the bulk liquid to the biocatalyst, liquid-to-gas mass transfer and the kinetic behavior of irreversible reactions in series. Copyright (C) 2012, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The kinetics of sugar cane bagasse cellulose saccharification and the decomposition of glucose under extremely low acid (ELA) conditions, (0.07%), 0.14%, and 0.28% H2SO4, and at high temperatures were investigated using batch reactors. The first-order rate constants were obtained by weight loss, remaining glucose, and fitting glucose concentration profiles determined with HPLC using the Saeman model. The maximum glucose yields reached 67.6% (200 degrees C, 0.07% H2SO4, 30 min), 69.8% (210 degrees C, 0.14% H2SO4, 10 min), and 67.3% (210 degrees C, 0.28% H2SO4, 6 min). ELA conditions produced remarkable glucose yields when applied to bagasse cellulose. The first-order rate constants were used to calculate activation energies and extrathermodynamic parameters to elucidate the reaction mechanism under ELA conditions. The effect of acid concentration on cellulose hydrolysis and glucose decomposition was also investigated. The observed activation energies and reaction orders with respect to hydronium ion for cellulose hydrolysis and glucose decomposition were 184.9 and 124.5 kJ/mol and 1.27 and 0.75, respectively.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A two-stage bioreactor was operated for a period of 140 days in order to develop a post-treatment process based on anaerobic bioxidation of sulfite. This process was designed for simultaneously treating the effluent and biogas of a full-scale UASB reactor, containing significant concentrations of NH4 and H2S, respectively. The system comprised of two horizontal-flow bed-packed reactors operated with different oxygen concentrations. Ammonium present in the effluent was transformed into nitrates in the first aerobic stage. The second anaerobic stage combined the treatment of nitrates in the liquor with the hydrogen sulfide present in the UASB-reactor biogas. Nitrates were consumed with a significant production of sulfate, resulting in a nitrate removal rate of 0.43 kg N m(3) day(-1) and a parts per thousand yen92 % efficiency. Such a removal rate is comparable to those achieved by heterotrophic denitrifying systems. Polymeric forms of sulfur were not detected (elementary sulfur); sulfate was the main product of the sulfide-based denitrifying process. S-sulfate was produced at a rate of about 0.35 kg m(3) day(-1). Sulfur inputs as S-H2S were estimated at about 0.75 kg m(3) day(-1) and Chemical Oxygen Demand (COD) removal rates did not vary significantly during the process. DGGE profiling and 16S rRNA identified Halothiobacillus-like species as the key microorganism supporting this process; such a strain has not yet been previously associated with such bioengineered systems.