4 resultados para Structural Plasticity

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The plastic brain responses generated by the training with acrobatic exercise (AE) and with treadmill exercise (TE) may be different. We evaluated the protein expression of synapsin I (SYS), synaptophysin (SYP), microtubule-associated protein 2 (MAP2) and neurofilaments (NF) by immunohistochemistry and Western blotting in the motor cortex, striatum and cerebellum of rats subjected to TE and AE. Young adult male Wistar rats were divided into 3 groups: sedentary (Sed) (n=15), TE (n=20) and AE (n=20). The rats were trained 3 days/week for 4 weeks on a treadmill at 0.6 km/h, 40 min/day (TE), or moved through a circuit of obstacles 5 times/day (AE). The rats from the TE group exhibited a significant increase of SYS and SYP in the motor cortex, of NF68, SYS and SYP in the striatum, and of MAP2, NF and SYS in the cerebellum, whereas NF was decreased in the motor cortex and the molecular layer of the cerebellar cortex. On the other hand, the rats from the AE group showed a significant increase of MAP2 and SYP in the motor cortex, of all four proteins in the striatum, and of SYS in the cerebellum. In conclusion, AE induced changes in the expression of synaptic and structural proteins mainly in the motor cortex and striatum, which may underlie part of the learning of complex motor tasks. TE, on the other hand, promoted more robust changes of structural proteins in all three regions, especially in the cerebellum, which is involved in learned and automatic tasks. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Increased neuronal oxidative stress (OxS) induces deleterious effects on signal transduction, structural plasticity and cellular resilience, mainly by inducing lipid peroxidation in membranes, proteins and genes. Major markers of OxS levels include the thiobarbituric acid reactive substances (TBARS) and the enzymes superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase. Lithium has been shown to prevent and/or reverse DNA damage, free-radical formation and lipid peroxidation in diverse models. This study evaluates OxS parameters in healthy volunteers prior to and following lithium treatment. Healthy volunteers were treated with lithium in therapeutic doses for 2-4 weeks. Treatment with lithium in healthy volunteers selectively altered SOD levels in all subjects. Furthermore, a significant decrease in the SOD/CAT ratio was observed following lithium treatment, wich was associated with decreased OxS by lowering hydrogen peroxide levels. This reduction in the SOD/CAT ratio may lead to lower OxS, indicated primarily by a decrease in the concentration of cell hydrogen peroxide. Overall, the present findings indicate a potential role for the antioxidant effects of lithium in healthy subjects, supporting its neuroprotective profile in bipolar disorder (BD) and, possibly, in neurodegenerative processes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Stress is the most commonly reported precipitating factor for seizures in patients with epilepsy. Despite compelling anecdotal evidence for stress-induced seizures, animal models of the phenomena are sparse and possible mechanisms are unclear. Here, we tested the hypothesis that increased levels of the stress-associated hormone corticosterone ( CORT) would increase epileptiform activity and spontaneous seizure frequency in mice rendered epileptic following pilocarpine-induced status epilepticus. We monitored video-EEG activity in pilocarpine-treated mice 24/7 for a period of four or more weeks, during which animals were serially treated with CORT or vehicle. CORT increased the frequency and duration of epileptiform events within the first 24 hours of treatment, and this effect persisted for up to two weeks following termination of CORT injections. Interestingly, vehicle injection produced a transient spike in CORT levels - presumably due to the stress of injection - and a modest but significant increase in epileptiform activity. Neither CORT nor vehicle treatment significantly altered seizure frequency; although a small subset of animals did appear responsive. Taken together, our findings indicate that treatment of epileptic animals with exogenous CORT designed to mimic chronic stress can induce a persistent increase in interictal epileptiform activity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Inaccurate wiring and synaptic pathology appear to be major hallmarks of schizophrenia. A variety of gene products involved in synaptic neurotransmission and receptor signaling are differentially expressed in brains of schizophrenia patients. However, synaptic pathology may also develop by improper expression of intra- and extra-cellular structural elements weakening synaptic stability. Therefore, we have investigated transcription of these elements in the left superior temporal gyrus of 10 schizophrenia patients and 10 healthy controls by genome-wide microarrays (Illumina). Fourteen up-regulated and 22 downregulated genes encoding structural elements were chosen from the lists of differentially regulated genes for further qRT-PCR analysis. Almost all genes confirmed by this method were downregulated. Their gene products belonged to vesicle-associated proteins, that is, synaptotagmin 6 and syntaxin 12, to cytoskeletal proteins, like myosin 6, pleckstrin, or to proteins of the extracellular matrix, such as collagens, or laminin C3. Our results underline the pivotal roles of structural genes that control formation and stabilization of pre- and post-synaptic elements or influence axon guidance in schizophrenia. The glial origin of collagen or laminin highlights the close interrelationship between neurons and glial cells in establishment and maintenance of synaptic strength and plasticity. It is hypothesized that abnormal expression of these and related genes has a major impact on the pathophysiology of schizophrenia.