6 resultados para Stored energy friction welding

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

100.00% 100.00%

Publicador:

Resumo:

An exact expression is derived for the time-averaged electromagnetic energy within a magneto-dielectric coated sphere, which is irradiated by a plane and time-harmonic electromagnetic wave. Both the spherical shell and core are considered to be dispersive and lossy, with a realistic dispersion relation of an isotropic split-ring resonator metamaterial. We obtain analytical expressions for the stored electromagnetic energies inside the core and the shell separately and calculate their contributions to the total average energy density. The stored electromagnetic energy is calculated for two situations involving a metamaterial coated sphere: a dielectric shell and dispersive metamaterial core, and vice versa. An explicit relation between the stored energy and the optical absorption efficiency is also obtained. We show that the stored electromagnetic energy is an observable sensitive to field interferences responsible for the Fano effect. This result, together with the fact that the Fano effect is more likely to occur in metamaterials with negative refraction, suggest that our findings may be explored in applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Oxide-dispersion-strengthened (ODS) ferritic-martensitic steels are candidates for applications in fusion power plants where micro structural long-term stability at temperatures of 650 degrees C to 700 degrees C are required. The microstructural stability of 80% cold-rolled reduced-activation ferritic-martensitic 9% Cr ODS-Eurofer steel was investigated within a wide range of temperatures (300 degrees C to 1350 degrees C). Fine oxide dispersion is very effective to prevent recrystallization in the ferritic phase field. The low recrystallized volume fraction (<0.1) found in samples annealed at 800 degrees C is associated with the nuclei found at prior grain boundaries and around coarse M23C6 particles. The combination of retarding effects such as Zener drag and concurrent recovery decrease the local stored energy and impede further growth of the recrystallization nuclei. Above 90 degrees C, martensitic transformation takes place with consequent coarsening. Significant changes in crystallographic texture are also reported.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we analyze the problem of light-matter interaction when absorptive resonances are imbedded in the material dispersion. We apply an improved approach to aluminum (Al) in the optical frequency range to investigate the impact of these resonances on the operating characteristics of Al-based nanoscale devices. Quantities such as group velocity, stored energy density, and energy velocity, normally obtained using a single resonance model [Wave Propagation and Group Velocity (Academic Press, 1960), Nat. Mater. 11, 208 (2012)], are now accurately calculated regardless of the medium adopted. We adapt the Loudon approach [Nat. Mater. 11, 208 (2012)] to media with several optical resonances and present the details of the extended model. We also show pertinent results for Al-based metal-dielectric-metal (MDM) waveguides, around spectral resonances. The model delineated here can be applied readily to any metal accurately characterized by Drude-Lorentz spectral resonance features. (C) 2012 Optical Society of America

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In a ball-on-disc wear test, an alumina ceramic body sliding against a silicon nitride ceramic body in water achieved an ultra-low friction coefficient (ULFC) of 0.004. The profilometer and EDX measurements indicated that the ULFC regime in this unmated Al2O3-Si3N4 pair was achieved because of the formation of a flat and smooth interface of nanometric roughness, which favored the hydrodynamic lubrication. The triboreactions formed silicon and aluminum hydroxides which contributed to decrease roughness and shear stress at the contact interface. This behavior enables the development of low energy loss water-based tribological systems using oxide ceramics. 13 2012 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This research addresses the application of friction stir welding (FWS) of titanium alloy Ti–6Al–4V. Friction stir welding is a recent process, developed in the 1990s for aluminum joining; this joining process is being increasingly applied in many industries from basic materials, such as steel alloys, to high performance alloys, such as titanium. It is a process in great development and has its economic advantages when compared to conventional welding. For high performance alloys such as titanium, a major problem to overcome is the construction of tools that can withstand the extreme process environment. In the literature, the possibilities approached are only few tungsten alloys. Early experiments with tools made of cemented carbide (WC) showed optimistic results consistent with the literature. It was initially thought that WC tools may be an option to the FSW process since it is possible to improve the wear resistance of the tool. The metallographic analysis of the welds did not show primary defects of voids (tunneling) or similar internal defects due to processing, only defects related to tool wear which can cause loss of weld quality. The severe tool wear caused loss of surface quality and inclusions of fragments inside the joining, which should be corrected or mitigated by means of coating techniques on tool, or the replacement of cemented carbide with tungsten alloys, as found in the literature.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Since the earliest developments of human history, friction has been a major issue. From the invention of the wheel and the use of the first lubricants to the studiesof coated and microtexturized surfaces, significant effort has been put on improvements that couldovercome the resistance to motion. Areview by Holmberg, Andersson and Erdemir[1] shows that, in an average passenger car, about one third of the total energy consumptionis due to friction losses. Of these, another one third is consumed in the engine system. The optimization of the lubricating oil formulation used ininternal combustion enginesis an important way to reduce friction, therefore improving energeticefficiencyand controllingemissions.Lubrication is also a way to assure the required protection to the system by maintaining wear rates in an adequate level, which helps to minimize maintenance costs.