18 resultados para Statistical Perturbation Theory
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
We consider general d-dimensional lattice ferromagnetic spin systems with nearest neighbor interactions in the high temperature region ('beta' << 1). Each model is characterized by a single site apriori spin distribution taken to be even. We also take the parameter 'alfa' = ('S POT.4') - 3 '(S POT.2') POT.2' > 0, i.e. in the region which we call Gaussian subjugation, where ('S POT.K') denotes the kth moment of the apriori distribution. Associated with the model is a lattice quantum field theory known to contain a particle of asymptotic mass -ln 'beta' and a bound state below the two-particle threshold. We develop a 'beta' analytic perturbation theory for the binding energy of this bound state. As a key ingredient in obtaining our result we show that the Fourier transform of the two-point function is a meromorphic function, with a simple pole, in a suitable complex spectral parameter and the coefficients of its Laurent expansion are analytic in 'beta'.
Resumo:
Knowing which individuals can be more efficient in spreading a pathogen throughout a determinate environment is a fundamental question in disease control. Indeed, over recent years the spread of epidemic diseases and its relationship with the topology of the involved system have been a recurrent topic in complex network theory, taking into account both network models and real-world data. In this paper we explore possible correlations between the heterogeneous spread of an epidemic disease governed by the susceptible-infected-recovered (SIR) model, and several attributes of the originating vertices, considering Erdos-Renyi (ER), Barabasi-Albert (BA) and random geometric graphs (RGG), as well as a real case study, the US air transportation network, which comprises the 500 busiest airports in the US along with inter-connections. Initially, the heterogeneity of the spreading is achieved by considering the RGG networks, in which we analytically derive an expression for the distribution of the spreading rates among the established contacts, by assuming that such rates decay exponentially with the distance that separates the individuals. Such a distribution is also considered for the ER and BA models, where we observe topological effects on the correlations. In the case of the airport network, the spreading rates are empirically defined, assumed to be directly proportional to the seat availability. Among both the theoretical and real networks considered, we observe a high correlation between the total epidemic prevalence and the degree, as well as the strength and the accessibility of the epidemic sources. For attributes such as the betweenness centrality and the k-shell index, however, the correlation depends on the topology considered.
Resumo:
Up to now the raise-and-peel model was the single known example of a one-dimensional stochastic process where one can observe conformal invariance. The model has one parameter. Depending on its value one has a gapped phase, a critical point where one has conformal invariance, and a gapless phase with changing values of the dynamical critical exponent z. In this model, adsorption is local but desorption is not. The raise-and-strip model presented here, in which desorption is also nonlocal, has the same phase diagram. The critical exponents are different as are some physical properties of the model. Our study suggests the possible existence of a whole class of stochastic models in which one can observe conformal invariance.
Resumo:
The photophysics of 8-azaadenine (8-AA) has been studied with the CASPT2//CASSCF protocol and ANO-L double-zeta basis sets. Stationary equilibrium structures, surface crossings, minimum energy paths, and linear interpolations have been used to study possible mechanisms to populate the lowest triplet state, T-1 (3)(pi pi*), capable of sensitizing molecular oxygen. Our results show that two main mechanisms can occur after photoexcitation to the S-2 (1)(pi pi*) state. The first one is through the S-2/S-1 conical intersection (((1)pi pi*/(1)n pi*)(Cl)), leading to the S-1 ((1)n pi*) state minimum, (S-1 ((1)n pi*))(min), where a singlet-triplet crossing, ((1)n pi*/(3)pi pi*)(STC), is accessible. The second one starts with the ((1)pi pi*/(3)n pi*)(STC) at the (S-2((1)pi pi*))(min), from which the system can evolve to the (T-2 ((3)n pi*))(min), with subsequent population of the T-1 excited electronic state, due to the ((3)n pi*/(3)pi pi*)(Cl) conical intersection.
Resumo:
In this paper we have quantified the consistency of word usage in written texts represented by complex networks, where words were taken as nodes, by measuring the degree of preservation of the node neighborhood. Words were considered highly consistent if the authors used them with the same neighborhood. When ranked according to the consistency of use, the words obeyed a log-normal distribution, in contrast to Zipf's law that applies to the frequency of use. Consistency correlated positively with the familiarity and frequency of use, and negatively with ambiguity and age of acquisition. An inspection of some highly consistent words confirmed that they are used in very limited semantic contexts. A comparison of consistency indices for eight authors indicated that these indices may be employed for author recognition. Indeed, as expected, authors of novels could be distinguished from those who wrote scientific texts. Our analysis demonstrated the suitability of the consistency indices, which can now be applied in other tasks, such as emotion recognition.
Resumo:
An overview is given of the limitations of Luttinger liquid theory in describing the real time equilibrium dynamics of critical one-dimensional systems with nonlinear dispersion relation. After exposing the singularities of perturbation theory in band curvature effects that break the Lorentz invariance of the Tomonaga-Luttinger model, the origin of high frequency oscillations in the long time behaviour of correlation functions is discussed. The notion that correlations decay exponentially at finite temperature is challenged by the effects of diffusion in the density-density correlation due to umklapp scattering in lattice models.
Resumo:
In this work, we introduce the class of quantum mechanics superpotentials W(x) = g epsilon(x)x(2n) and study in detail the cases n = 0 and 1. The n = 0 superpotential is shown to lead to the known problem of two supersymmetrically related Dirac delta potentials (well and barrier). The n = 1 case results in the potentials V+/-(x) = g(2)x(4) +/- 2g|x|. For V-, we present the exact ground-state solution and study the excited states by a variational technique. Starting from the ground state of V- and using logarithmic perturbation theory, we study the ground states of V+ and also of V(x) = g(2)x(4) and compare the result obtained in this new way with other results for this last potential in the literature.
Resumo:
The hydration of mesityl oxide (MOx) was investigated through a sequential quantum mechanics/molecular mechanics approach. Emphasis was placed on the analysis of the role played by water in the MOx syn-anti equilibrium and the electronic absorption spectrum. Results for the structure of the MOx-water solution, free energy of solvation and polarization effects are also reported. Our main conclusion was that in gas-phase and in low-polarity solvents, the MOx exists dominantly in syn-form and in aqueous solution in anti-form. This conclusion was supported by Gibbs free energy calculations in gas phase and in-water by quantum mechanical calculations with polarizable continuum model and thermodynamic perturbation theory in Monte Carlo simulations using a polarized MOx model. The consideration of the in-water polarization of the MOx is very important to correctly describe the solute-solvent electrostatic interaction. Our best estimate for the shift of the pi-pi* transition energy of MOx, when it changes from gas-phase to water solvent, shows a red-shift of -2,520 +/- 90 cm(-1), which is only 110 cm(-1) (0.014 eV) below the experimental extrapolation of -2,410 +/- 90 cm(-1). This red-shift of around -2,500 cm(-1) can be divided in two distinct and opposite contributions. One contribution is related to the syn -> anti conformational change leading to a blue-shift of similar to 1,700 cm(-1). Other contribution is the solvent effect on the electronic structure of the MOx leading to a red-shift of around -4,200 cm(-1). Additionally, this red-shift caused by the solvent effect on the electronic structure can by composed by approximately 60 % due to the electrostatic bulk effect, 10 % due to the explicit inclusion of the hydrogen-bonded water molecules and 30 % due to the explicit inclusion of the nearest water molecules.
Resumo:
Renyi and von Neumann entropies quantifying the amount of entanglement in ground states of critical spin chains are known to satisfy a universal law which is given by the conformal field theory (CFT) describing their scaling regime. This law can be generalized to excitations described by primary fields in CFT, as was done by Alcaraz et al in 2011 (see reference [1], of which this work is a completion). An alternative derivation is presented, together with numerical verifications of our results in different models belonging to the c = 1, 1/2 universality classes. Oscillations of the Renyi entropy in excited states are also discussed.
Resumo:
The mechanisms responsible for containing activity in systems represented by networks are crucial in various phenomena, for example, in diseases such as epilepsy that affect the neuronal networks and for information dissemination in social networks. The first models to account for contained activity included triggering and inhibition processes, but they cannot be applied to social networks where inhibition is clearly absent. A recent model showed that contained activity can be achieved with no need of inhibition processes provided that the network is subdivided into modules (communities). In this paper, we introduce a new concept inspired in the Hebbian theory, through which containment of activity is achieved by incorporating a dynamics based on a decaying activity in a random walk mechanism preferential to the node activity. Upon selecting the decay coefficient within a proper range, we observed sustained activity in all the networks tested, namely, random, Barabasi-Albert and geographical networks. The generality of this finding was confirmed by showing that modularity is no longer needed if the dynamics based on the integrate-and-fire dynamics incorporated the decay factor. Taken together, these results provide a proof of principle that persistent, restrained network activation might occur in the absence of any particular topological structure. This may be the reason why neuronal activity does not spread out to the entire neuronal network, even when no special topological organization exists.
Resumo:
With the one-boson-exchange model, we study the interaction between the S-wave D(*)/D-s(*) meson and S-wave B(*)/B-s(*) meson considering the S-D mixing effect. Our calculation indicates that there may exist the B-c-like molecular states. We estimate their masses and list the possible decay modes of these B-c-like molecular states, which may be useful to the future experimental search.
Resumo:
Exact results on particle densities as well as correlators in two models of immobile particles, containing either a single species or else two distinct species, are derived. The models evolve following a descent dynamics through pair annihilation where each particle interacts once at most throughout its entire history. The resulting large number of stationary states leads to a non-vanishing configurational entropy. Our results are established for arbitrary initial conditions and are derived via a generating function method. The single-species model is the dual of the 1D zero-temperature kinetic Ising model with Kimball-Deker-Haake dynamics. In this way, both in finite and semi-infinite chains and also the Bethe lattice can be analysed. The relationship with the random sequential adsorption of dimers and weakly tapped granular materials is discussed.
Resumo:
Spectral decomposition has rarely been used to investigate complex networks. In this work we apply this concept in order to define two kinds of link-directed attacks while quantifying their respective effects on the topology. Several other kinds of more traditional attacks are also adopted and compared. These attacks had substantially diverse effects, depending on each specific network (models and real-world structures). It is also shown that the spectrally based attacks have special effects in affecting the transitivity of the networks.
Resumo:
The ground-state phase diagram of an Ising spin-glass model on a random graph with an arbitrary fraction w of ferromagnetic interactions is analysed in the presence of an external field. Using the replica method, and performing an analysis of stability of the replica-symmetric solution, it is shown that w = 1/2, corresponding to an unbiased spin glass, is a singular point in the phase diagram, separating a region with a spin-glass phase (w < 1/2) from a region with spin-glass, ferromagnetic, mixed and paramagnetic phases (w > 1/2).
Resumo:
In this contribution, the multiconfigurational second-order perturbation theory method based on a complete active space reference wave function (CASSCF/CASPT2) is applied to study all possible single and double proton/hydrogen transfers between the nucleobases in the adenine-thymine (AT) base pair, analyzing the role of excited states with different nature [localized (LE) and charge transfer (CT)] and considering concerted as well as step-wise mechanisms. According to the findings, once the lowest excited states, localized in adenine, are populated during UV irradiation of the Watson-Crick base pair, the proton transfer in the N-O bridge does not require high energy in order to populate a CT state. The latter state will immediately relax toward a crossing with the ground state, which will funnel the system to either the canonical structure or the imino-enol tautomer. The base pair is also capable of repairing itself easily since the imino-enol species is unstable to thermal conversion.