4 resultados para State Rehabilitation Advisory Council of Illinois
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Increased plasma osmolality by food intake evokes augmentation of plasma oxytocin (OT). Ovarian steroids may also influence the balance of body fluids by acting on OT neurones. Our aim was to determine if estrogen influences the activity of OT neurones in paraventricular nucleus (PVN) and supraoptic nucleus (SON) under different osmotic situations. Ovariectomized rats (OVX) were treated with either estradiol (E-2) or vehicle and were divided into three groups: group I was fed ad libitum, group II underwent 48 h of fasting, and group III was refed after 48 h of fasting. On the day of the experiment, blood samples were collected to determine the plasma osmolality and OT. The animals were subsequently perfused, and OT/FOS immunofluorescence analysis was conducted on neurones in the PVN and the SON. When compared to animals which were fasted or fed ad libitum, the plasma osmolality of refed animals was higher, regardless of whether they were treated with vehicle or E-2. We observed neural activation of OT cells in vehicle-or E-2-treated OVX rats refed after 48 h of fasting, but not in animals fed ad libitum or in animals that only underwent 48 h of fasting. Finally, the percentage of neurones that co-expressed OT and FOS was lower in both the PVN and the SON of animals treated with E-2 and refed, when compared to vehicle-treated animals. These results suggest that E-2 may have an inhibitory effect on OT neurones and may modulate the secretion of OT in response to the increase of osmolality induced by refeeding. Journal of Endocrinology (2012) 212, 129-138
Resumo:
Introduction: The progress in technology, associated to the high survival rate in premature newborn infants in neonatal intensive care units, causes an increase in morbidity. Individuals with CP present complex motor alterations, with primary deficits of abnormal muscle tone affecting posture and voluntary movement, alteration of balance and coordination, decrease of force, and loss of selective motor control with secondary problems of contractures and bone deformities. Objective: The aim of this work is to describe the spontaneous movement and strategies that lead infants with cerebral palsy to move. Methods: Seven infants used to receive assistance at the Essential Stimulation Center of CIAM (Israeli Center for Multidisciplinary Support - Philanthropic Institution), with ages ranging between six and 18 months with diagnosis of Cerebral Palsy (CP) were assessed. Results: The results show the difficulty presented by the infants with respect to the spontaneous motor functions and the necessity of help from the caregiver in order to perform the functional activity (mobility). Prematurity prevails as the major risk factor among the complications. Conclusion: The child development can be understood as a product of the dynamic interactions involving the infant, the family, and the context. Thus, the social interactions and family environment in which the infant live may encourage or limit both the acquisition of skills and the functional independence.
Resumo:
We derive general rigorous lower bounds for the average ground state energy per site e ((d)) of the quantum and classical Edwards-Anderson spin-glass model in dimensions d=2 and d=3 in the thermodynamic limit. For the classical model they imply that e ((2))a parts per thousand yena'3/2 and e ((3))a parts per thousand yena'2.204a <-.
Resumo:
The efficiency of the charge-carrier photogeneration processes in poly(2,5-bis(3',7'-dimethyl-octyloxy)-1,4-phenylene vinylene) (OC(1)OC10-PPV) has been analyzed by the spectral response of the photocurrent of devices in ITO/polymer/Al structures. The symbatic response of the photocurrent action spectra of the OC1OC10-PPV devices, obtained for light-excitation through the ITO electrode and for forward bias, has been fitted using a phenomenological model which considers that the predominant transport mechanism under external applied electric field is the drift of photogenerated charge-carriers, neglecting charge-carrier diffusion. The proposed model takes into account that charge-carrier photogeneration occurs via intermediate stages of bounded pairs (excitonic states), followed by dissociation processes. Such processes result in two different contributions to the photoconductivity: The first one, associated to direct creation of unbound polaron pairs due to intrinsic photoionization; and the second one is associated to secondary processes like extrinsic photoinjection at the metallic electrodes. The results obtained from the model have shown that the intrinsic component of the photoconductivity at higher excitation energies has a considerably higher efficiency than the extrinsic one, suggesting a dependence on the photon energy for the efficiency of the photogeneration process.