4 resultados para State Fragmentation
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
A 30-year quantitative comparison of the bird community of a semideciduous forest remnant in the state of Sao Paulo. Few studies have evaluated long-term changes in avian abundance in forest remnants. To compare both species richness and abundance of the bird community in a forest fragment located in the municipality of Galia, state of Sao Paulo, southeastern Brazil, we surveyed forest birds using transect counts. We compared our results with a survey conducted 30 years earlier at the same locality and further classified bird species according to their food habits to eventually predict fluctuations of specific abundance. Although species with population declines predominated in the community, all trophic categories had species which increased their abundances. Most species prone to move around remnants decreased in abundance. We suggest that, regarding specific abundances, trophic categories may be equally affected as a result of fragmentation processes and that the forest regeneration of this remnant may have led to the loss of edge species. Species that suffered from abundance loss during this time period may become locally extinct in the near future.
Resumo:
Litterfall and litter decomposition are vital processes in tropical forests because they regulate nutrient cycling. Nutrient cycling can be altered by forest fragmentation. The Atlantic Forest is one of the most threatened biomes in the world due to human occupation over the last 500 years. This scenario has resulted in fragments of different size, age and regeneration phase. To investigate differences in litterfall and leaf decomposition between forest successional phases, we compared six forest fragments at three different successional phases and an area of mature forest on the Atlantic Plateau of Sao Paulo, Brazil. We sampled litter monthly from November 2008 to October 2009. We used litterbags to calculate leaf decomposition rate of an exotic species, Tipuana tipu (Fabaceae), over the same period litter sampling was performed. Litterfall was higher in the earliest successional area. This pattern may be related to the structural properties of the forest fragments, especially the higher abundance of pioneer species, which have higher productivity and are typical of early successional areas. However, we have not found significant differences in the decomposition rates between the studied areas, which may be caused by rapid stabilization of the decomposition environment (combined effect of microclimatic conditions and the decomposers activities). This result indicates that the leaf decomposition process have already been restored to levels observed in mature forests after a few decades of regeneration, although litterfall has not been entirely restored. This study emphasizes the importance of secondary forests for restoration of ecosystem processes on a regional scale.
Resumo:
The spatial and temporal distribution of organisms is a fundamental aspect of biological communities. The present study focused on three remnants of arboreal Caatinga in northeastern Brazil between May, 2009 and April, 2010. A total of 627 euglossine males were captured in traps baited with artificial aromatic compounds. The specimens belonged to 14 species and four genera: Euglossa Latreille, Eulaema Lepeletier, Eufriesea Cockerell, and Exaerete Hoffmannsegg. Eulaema nigrita Lepeletier (41.6), Euglossa carolina Nem,sio (15.3%), Eulaema marcii Nem,sio (13.6%), and Euglossa melanotricha Moure (12.8%) were the most common species sampled. The distribution of collected specimens per fragment was as follows: BraA(0)na (280 ha)-259 individuals belonging to 14 species; Cambui (179 ha)-161 individuals from eight species; and Pindoba (100 ha)-207 individuals represented by seven species. BraA(0)na had the highest diversity (H'aEuro parts per thousand= 1.91) and estimated species richness. The largest fragment was the main source of the observed variation in species richness and abundance, indicating a non-random pattern of spatial distribution. The analysis of environmental factors indicated that seasonal variation in these factors was the principal determinant of species occurrence and abundance.
Resumo:
The effect of habitat fragmentation on the structure of orchid bee communities was analyzed by the investigation of the existence of a spatial structure in the richness and abundance of Euglossini species and by determining the relationship between these data and environmental factors. The surveys were carried out in four different forest fragments and one university campus. Richness, abundance, and diversity of species were analyzed in relation to abiotic (size of the area, extent of the perimeter, perimeter/area ratio, and shape index) and biotic characteristics (vegetation index of the fragment and of the matrix of each of the locations studied). We observed a highly significant positive correlation between the diversity index and the vegetation index of the fragment, landscape and shape index. Our analysis demonstrated that the observed variation could be explained mainly by the vegetation index and the size of the fragment. Variations in relative abundance showed a tendency toward an aggregated spatial distribution between the fragments studied, as well as between the sampling stations within the same habitat, demonstrating the existence of a spatial structure on a small scale in the populations of Euglossini. This distribution will determine the composition of species that coexist in the area after fragmentation. These data help in understanding the differences and similarities in the structure of communities of Euglossini resulting from forest fragmentation.