10 resultados para Staphylococcus intermedius
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
It is important to determine the toxicity of compounds and co-solvents that are used in cell monolayer permeability studies to increase confidence in the results obtained from these in vitro experiments. This study was designed to evaluate the cytotoxicity of new nifuroxazide derivatives with potential activity against Methicillin-resistant Staphylococcus aureus (MRSA) in Caco-2 cells to select analogues for further in vitro permeability analyses. In this study, nitrofurantoin and nifuroxazide, in addition to 6 furanic and 6 thiophenic nifuroxazide derivatives were tested at 2, 4, 6, 8 and 10 mu g/mL. In vitro cytotoxicity assays were performed according to the MTT (methyl tetrazolium) assay protocol described in ISO 10993-5. The viability of treated Caco-2 cells was greater than 83% for all tested nitrofurantoin concentrations, while those treated with nifuroxazide at 2, 4 and 6 mu g/mL had viabilities greater than 70%. Treatment with the nifuroxazide analogues resulted in viability values greater than 70% at 2 and 4 mu g/mL with the exception of the thiophenic methyl-substituted derivative, which resulted in cell viabilities below 70% at all tested concentrations. Caco-2 cells demonstrated reasonable viability for all nifuroxazide derivatives, except the thiophenic methyl-substituted compound. The former were selected for further permeability studies using Caco-2 cells. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
The objective of this study was to assess the relationship between somatic cell counts (SCC), the use of different milking practices, and the occurrence of Staphylococcus aureus and Escherichia coli O157:H7 in 42 small-scale dairy farms located in the state of Sao Paulo, Brazil. S. aureus and E. coli O157:H7 were isolated in the milk from dairy cows with low (< 200,000 cells/ml) and high SCC (>200,000 cells/ml), although no effect of SCC (p > 0.05) was observed on the incidence of the bacteria in raw milk. The use of disposable gloves during milking reduced S. aureus counts in milk (p < 0.05), but did not affect the occurrence of E. coli O157:H7. The other milking practices evaluated (closed milking system, use of pre- and post-dipping, mastitis diagnosis by strip cup test, and disinfection of teat cups) did not affect (p < 0.05) the occurrence of S. aureus or E. coli O157:H7 in raw milk. Results indicate the need for effective educational programs addressed to prevent the contamination of milk with S. aureus and E. coli O157:H7 in Brazilian small-scale dairy farms.
Resumo:
Martins JM, Longhi-Balbinot DT, Soares DM, Figueiredo MJ, Malvar D do C, de Melo MC, Rae GA, Souza GE. Involvement of PGE(2) and RANTES in Staphylococcus aureus-induced fever in rats. J Appl Physiol 113: 1456-1465, 2012. First published August 30, 2012; doi:10.1152/japplphysiol.00936.2011.-This study investigated the involvement of prostaglandins and regulated on activation, normal T cell expressed and secreted (RANTES), in fever induced by live Staphylococcus aureus (no. 25923, American Type Culture Collection) injection in rats. S. aureus was injected intraperitoneally at 10(9), 10(10), and 2 x 10(10) colony-forming units (CFU)/cavity, and body temperature (T-b) was measured by radiotelemetry. The lowest dose of S. aureus induced a modest transient increase in T-b, whereas the two higher doses promoted similar long-lasting and sustained T-b increases. Thus, the 10(10) CFU/cavity dose was chosen for the remaining experiments. The T-b increase induced by S. aureus was accompanied by significant decreases in tail skin temperature and increases in PGE(2) levels in the cerebrospinal fluid (CSF) and hypothalamus but not in the venous plasma. Celecoxib (selective cyclooxygenase-2 inhibitor, 2.5 mg/kg po) inhibited the fever and the increases in PGE(2) concentration in the CSF and hypothalamus induced by S. aureus. Dipyrone (120 mg/kg ip) reduced the fever from 2.5 to 4 h and the PGE(2) increase in the CSF but not in the hypothalamus. S. aureus increased RANTES in the peritoneal exudate but not in the CSF or hypothalamus. Met-RANTES (100 mu g/kg iv), a chemokine (C-C motif) receptor (CCR)1/CCR5 antagonist, reduced the first 6 h of fever induced by S. aureus. This study suggests that peripheral (local) RANTES and central PGE(2) production are key events in the febrile response to live S. aureus injection. As dipyrone does not reduce PGE(2) synthesis in the hypothalamus, it is plausible that S. aureus induces fever, in part, via a dipyrone-sensitive PGE(2)-independent pathway.
Resumo:
This research aimed to evaluate the occurrence of Staphylococcus aureus isolates in milk and in the milking environment of 10 small-scale farms (<400 L/d) located in the regions of Franca and Ribeirao Preto, state of Sao Paulo, Brazil. Two-hundred twenty samples of milk were collected from individual cows, along with 120 samples from bulk tank milk, 389 samples from milking equipment and utensils (teat cups, buckets, and sieves), and 120 samples from milkers' hands. Fifty-six Staph. aureus strains were isolated from 849 analyzed samples (6.6%): 12 (5.5%) from milk samples of individual cows, 26 (21.7%) from samples of bulk tank milk, 14 (3.6%) from samples collected from equipment and utensils, and 4 (3.3%) from samples from milkers' hands. Pulsed-field gel electrophoresis typing of the 56 Staph. aureus isolates by SmaI restriction enzyme resulted in 31 profiles (pulsotypes) arranged in 12 major clusters. Results of this study indicate a low incidence, but wide distribution of Staph. aureus strains isolated from raw milk collected from individual cows and surfaces of milkers' hands and milking equipment in the small-scale dairy farms evaluated. However, the high percentage of bulk milk samples found with Staph. aureus is of public health concern because raw, unprocessed milk is regularly consumed by the Brazilian population.
Resumo:
The objective was to evaluate the performance of surveillance cultures at various body sites for Staphylococcus aureus colonization in pregnant women and newborns (NB) and the factors associated with nasal colonization. For NB, 4 sites were evaluated: nares, oropharynx, perineum, and umbilical stump (birth, third day, and weekly). For pregnant women, 4 sites during labor: anterior nares, anus, perineum, and oropharynx. Nasally colonized patients were compared with colonized only extranasally. Colonization was 53% of 392 pregnant women (methicillin-resistant S. aureus [MRSA]: 4%) and 47% of 382 NB (MRSA: 9%). For newborn patients, the best body site was the umbilical stump (methicillin-susceptible S. aureus [MSSA]: 64%; MRSA: 68%) and the combination of nares + umbilical (MSSA: 86%; MRSA: 91%). Among pregnant women, the best body site was the anterior nares (MSSA: 59%; MRSA: 67%) and the combination of nares + oropharynx (MSSA: 83%; MRSA: 80%). A smaller number of household members were associated with MRSA carriage in pregnant women (2.2 +/- 0.6 versus 3.6 +/- 1.8; P = 0.04). In conclusion, multiple culture sites are needed. Control programs based on surveillance cultures may be compromised. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
Background Staphylococcus aureus is the most common agent of septic arthritis that is a severe, rapidly progressive and destructive joint disease. Superantigens produced by S. aureus are considered the major arthritogenic factors. In this study, we compared the arthritogenic potential of five superantigen-producing staphylococcal strains. Methods Male C57BL/6 mice were intravenously infected with ATCC 19095 SEC+, N315 ST5 TSST-1+, S-70 TSST-1+, ATCC 51650 TSST-1+ and ATCC 13565 SEA+ strains. Clinical parameters as body weight, arthritis incidence and clinical score were daily evaluated. Joint histopathological analysis and spleen cytokine production were evaluated at the 14th day after infection. Results Weight loss was observed in all infected mice. ATCC 19095 SEC+, N315 ST5 TSST-1+ and S-70 TSST-1+ were arthritogenic, being the highest scores observed in ATCC 19095 SEC+ infected mice. Intermediate and lower clinical scores were observed in N315 ST5 TSST-1+ and S-70 TSST-1+ infected mice, respectively. The ATCC 13565 SEA+ strain caused death of 85% of the animals after 48 h. Arthritis triggered by the ATCC 19095 SEC+ strain was characterized by accentuated synovial hyperplasia, inflammation, pannus formation, cartilage destruction and bone erosion. Similar joint alterations were found in N315 ST5 TSST-1+ infected mice, however they were strikingly more discrete. Only minor synovial proliferation and inflammation were triggered by the S-70 TSST-1+ strain. The lowest levels of TNF-α, IL-6 and IL-17 production in response to S. aureus stimulation were found in cultures from mice infected with the less arthritogenic strains (S-70 TSST-1+ and ATCC 51650 TSST-1+). The highest production of IL-17 was detected in mice infected with the most arthritogenic strains (ATCC 19095 SEC+ and N315 ST5 TSST-1+). Conclusions Together these results demonstrated that S. aureus strains, isolated from biological samples, were able to induce a typical septic arthritis in mice. These results also suggest that the variable arthritogenicity of these strains was, at least in part, related to their differential ability to induce IL-17 production.
Resumo:
This review is addressed two pathophysiologic mechanisms implicated in the pathogenesis of nasal polyposis: the unique remodeling process found in nasal polyp tissue and the immune response of patients with nasal polyposis to Staphylococcus aureus. These two theories converge to the same direction in different aspects, including decreased extracellular matrix production, impaired T regulation and favoring of a Th2 immune response. In patients with nasal polyposis, an exaggerated immune response to Staphylococcus aureus may aggravate the airway remodeling process.
Resumo:
Epithelial cells in oral cavities can be considered reservoirs for a variety of bacterial species. A polymicrobial intracellular flora associated with periodontal disease has been demonstrated in buccal cells. Important aetiological agents of systemic and nosocomial infections have been detected in the microbiota of subgingival biofilm, especially in individuals with periodontal disease. However, non-oral pathogens internalized in oral epithelial cells and their relationship with periodontal status are poorly understood. The purpose of this study was to detect opportunistic species within buccal and gingival crevice epithelial cells collected from subjects with periodontitis or individuals with good periodontal health, and to associate their prevalence with periodontal clinical status. Quantitative detection of total bacteria and Staphylococcus aureus, Pseudomonas aeruginosa and Enterococcus faecalis in oral epithelial cells was determined by quantitative real-time PCR using universal and species-specific primer sets. Intracellular bacteria were visualized by confocal microscopy and fluorescence in situ hybridization. Overall, 33 % of cell samples from patients with periodontitis contained at least one opportunistic species, compared with 15 % of samples from healthy individuals. E. faecalis was the most prevalent species found in oral epithelial cells (detected in 20.6 % of patients with periodontitis, P = 0.03 versus healthy individuals) and was detected only in cells from patients with periodontitis. Quantitative real-time PCR showed that high levels of P. aeruginosa and S. aureus were present in both the periodontitis and healthy groups. However, the proportion of these species was significantly higher in epithelial cells of subjects with periodontitis compared with healthy individuals (P = 0.016 for P. aeruginosa and P = 0.047 for S. aureus). Although E. faecalis and P. aeruginosa were detected in 57 % and 50 % of patients, respectively, with probing depth and clinical attachment level ≥6 mm, no correlation was found with age, sex, bleeding on probing or the presence of supragingival biofilm. The prevalence of these pathogens in epithelial cells is correlated with the state of periodontal disease.
Resumo:
Staphylococcus aureus TenA (SaTenA) is a thiaminase type II enzyme that catalyzes the deamination of aminopyrimidine, as well as the cleavage of thiamine into 4-amino-5-hydroxymethyl-2-methylpyrimidine (HMP) and 5-(2-hydroxyethyl)-4-methylthiazole (THZ), within thiamine (vitamin B1) metabolism. Further, by analogy with studies of Bacillus subtilis TenA, SaTenA may act as a regulator controlling the secretion of extracellular proteases such as the subtilisin type of enzymes in bacteria. Thiamine biosynthesis has been identified as a potential drug target of the multi-resistant pathogen S. aureus and therefore all enzymes involved in the S. aureus thiamine pathway are presently being investigated in detail. Here, the structure of SaTenA, determined by molecular replacement and refined at 2.7 A ° resolution to an R factor of 21.6% with one homotetramer in the asymmetric unit in the orthorhombic space group P212121, is presented. The tetrameric state of wild-type (WT) SaTenA was postulated to be the functional biological unit and was confirmed by small-angle X-ray scattering (SAXS) experiments in solution. To obtain insights into structural and functional features of the oligomeric SaTenA, comparative kinetic investigations as well as experiments analyzing the structural stability of the WT SaTenA tetramer versus a monomeric SaTenA mutant were performed.