3 resultados para Standing-wave fields
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
We study baryon asymmetry generation originated from the leptogenesis in the presence of hypermagnetic fields in the early Universe plasma before the electroweak phase I ransition (EWPT). For the simplest Chern-Simons (CS) wave configuration of hypermagnetic field we find the baryon asymmetry growth when the hypermagnetic field value changes due to alpha(2)-dynamo and the lepton asymmetry rises due to the Abelian anomaly. We solve the corresponding integro-differential equations for the lepton asymmetries describing such selfconsistent dynamics for lepto- and baryogenesis in the two scenarios: (i) when a primordial lepton asymmetry sits in right electrons e(R); and (ii) when, in addition to e(R), a left lepton asyninwtty for e(L) and v(eL) at due to chirality flip reactions provided by in Iiigg,s decays at the temperatures, T < T-RL similar to 10 TeV. We find that the baryon asymmetry of the Universe (BAU) rises very fast through such leptogenesis, especially, in strong hypermagnetic fields. Varying (decreasing) the CS wave number parameter k(0) < 10(-7) T-EW one can recover the observable value of BAU, eta(B) similar to 10(-9), where k(0) = 10(-7) T-EW corresponds to the ataxinittat value for CS wave number surviving ohmic dissipation of hypermagnetic field. In the scenario (ii) one predicts the essential difference of the lepton numbers of right- and left electrons at EWPT time, L-eR - L-eL similar to (mu(eR) / mu(eL))/T-EW = Delta mu/T-EW similar or equal to 10(-5) that can be used as an initial condition for chiral asymmetry after EWPT.
Resumo:
The structure of additional electromagnetic fields to the Aharonov-Bohm field, for which the Schrodinger, Klein-Gordon, and Dirac equations can be solved exactly are described and the corresponding exact solutions are found. It is demonstrated that aside from the known cases (a constant and uniform magnetic field that is parallel to the Aharonov-Bohm solenoid, a static spherically symmetrical electric field, and the field of a magnetic monopole), there are broad classes of additional fields. Among these new additional fields we have physically interesting electric fields acting during a finite time or localized in a restricted region of space. There are additional time-dependent uniform and isotropic electric fields that allow exact solutions of the Schrodinger equation. In the relativistic case there are additional electric fields propagating along the Aharonov-Bohm solenoid with arbitrary electric pulse shape. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4714352]
Resumo:
We analyze the behavior of a relativistic particle moving under the influence of a uniform magnetic field and a stationary electrostatic wave. We work with a set of pulsed waves that allows us to obtain an exact map for the system. We also use a method of control for near-integrable Hamiltonians that consists of the addition of a small and simple control term to the system. This control term creates invariant tori in phase space that prevent chaos from spreading to large regions, making the controlled dynamics more regular. We show numerically that the control term just slightly modifies the system but is able to drastically reduce chaos with a low additional cost of energy. Moreover, we discuss how the control of chaos and the consequent recovery of regular trajectories in phase space are useful to improve regular particle acceleration.