17 resultados para Sport and Exercise Psychology
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Addressing integrative possibilities between psychology and anthropology, this paper aims to design conceptual linkages between semiotic-cultural constructivist psychology and the anthropological theory of Amerindian perspectivism. From the psychological view, it is the interdependence between the structural and processual dimensions of the personal culture that makes parallels with Amerindian perspectivism fruitful. This anthropological frame proposes an experiment with native conceptions, which I argue similar to what Baldwin (1906) called sembling. Hence, it can be considered an active imitation of otherness` viewpoint in order to approach indigenous worlds. It is supposed that this procedure leads to the emergence of new symbolic elements configuring the cultural action field of each agency in interaction. It is proposed that ""making-believe`` the Amerindian is convergent with the dialogic-hermeneutic approach of semiotic-cultural constructivism. As a result of the present integrative effort, is designed a meta-model that multiplies the genetic process of concrete symbolic objects.
Resumo:
The present investigation was undertaken to test whether exercise training (ET) associated with AMPK/PPAR agonists (EM) would improve skeletal muscle function in mdx mice. These drugs have the potential to improve oxidative metabolism. This is of particular interest because oxidative muscle fibers are less affected in the course of the disease than glycolitic counterparts. Therefore, a cohort of 34 male congenic C57Bl/10J mdx mice included in this study was randomly assigned into four groups: vehicle solution (V), EM [AICAR (AMPK agonist, 50 mg/Kg-1.day-1, ip) and GW 1516 (PPAR delta agonist, 2.5 mg/Kg-1.day-1, gavage)], ET (voluntary running on activity wheel) and EM+ET. Functional performance (grip meter and rotarod), aerobic capacity (running test), muscle histopathology, serum creatine kinase (CK), levels of ubiquitined proteins, oxidative metabolism protein expression (AMPK, PPAR, myoglobin and SCD) and intracellular calcium handling (DHPR, SERCA and NCX) protein expression were analyzed. Treatments started when the animals were two months old and were maintained for one month. A significant functional improvement (p<0.05) was observed in animals submitted to the combination of ET and EM. CK levels were decreased and the expression of proteins related to oxidative metabolism was increased in this group. There were no differences among the groups in the intracellular calcium handling protein expression. To our knowledge, this is the first study that tested the association of ET with EM in an experimental model of muscular dystrophy. Our results suggest that the association of ET and EM should be further tested as a potential therapeutic approach in muscular dystrophies.
Resumo:
Objectives The current study investigated to what extent task-specific practice can help reduce the adverse effects of high-pressure on performance in a simulated penalty kick task. Based on the assumption that practice attenuates the required attentional resources, it was hypothesized that task-specific practice would enhance resilience against high-pressure. Method Participants practiced a simulated penalty kick in which they had to move a lever to the side opposite to the goalkeeper's dive. The goalkeeper moved at different times before ball-contact. Design Before and after task-specific practice, participants were tested on the same task both under low- and high-pressure conditions. Results Before practice, performance of all participants worsened under high-pressure; however, whereas one group of participants merely required more time to correctly respond to the goalkeeper movement and showed a typical logistic relation between the percentage of correct responses and the time available to respond, a second group of participants showed a linear relationship between the percentage of correct responses and the time available to respond. This implies that they tended to make systematic errors for the shortest times available. Practice eliminated the debilitating effects of high-pressure in the former group, whereas in the latter group high-pressure continued to negatively affect performance. Conclusions Task-specific practice increased resilience to high-pressure. However, the effect was a function of how participants responded initially to high-pressure, that is, prior to practice. The results are discussed within the framework of attentional control theory (ACT).
Resumo:
The aim of this study was to compare the effects of acute aerobic and strength exercises on selected executive functions. A counterbalanced, crossover, randomized trial was performed. Forty-two healthy women were randomly submitted to three different conditions: (1) aerobic exercise, (2) strength exercise, and (3) control condition. Before and after each condition, executive functions were measured by the Stroop Test and the Trail Making Test. Following the aerobic and strength sessions, the time to complete the Stroop "non-color word" and "color word" condition was lower when compared with that of the control session. The performance in the Trail Making Test was unchanged. In conclusion, both acute aerobic and strength exercises improve the executive functions. Nevertheless, this positive effect seems to be task and executive function dependent.
Resumo:
It is well established that atherogenic dyslipidemia, characterized by high levels of triglycerides (TG), total cholesterol (TC), and low-density lipoprotein (LDL) cholesterol and low levels of high-density lipoprotein (HDL) cholesterol, constitutes important risk factors for cardiovascular disease. Regular exercise has been associated with a reduced risk for metabolic diseases. However, studies supporting the concept that resistance exercise is a modifier of blood lipid parameters are often contradictory. The aim of this study was to investigate the effects of high-intensity resistance exercise on the serum levels of TG, TC, HDL and non-HDL cholesterol, glucose, and the liver function enzymes alanine aminotransferase (ALT, EC 2.6.1.2) and aspartate aminotransferase (AST, EC 2.6.1.1) in golden Syrian hamsters (Mesocricetus auratus (Waterhouse, 1839)) fed a hypercholesterolemic diet. Sedentary groups (S) and exercise groups (E) were fed a standard diet (SS and ES) or a cholesterol-enriched diet (standard plus 1% cholesterol, SC and EC). Resistance exercise was performed by jumps in the water, carrying a load strapped to the chest, representing 10 maximum repetitions (10 RM, 30 s rest, five days per week for five weeks). Mean blood sample comparisons were made by ANOVA + Tukey or ANOVA + Kruskal-Wallis tests (p < 0.05) to compare parametric and nonparametric samples, respectively. There were no differences in blood lipids between the standard diet groups (SS and ES) (p > 0.05). However, the EC group increased the glucose, non-HDL, and TC levels in comparison with the ES group. Moreover, the EC group increased the TG levels versus the SC group (p < 0.05). In addition, the ALT levels were increased only by diet treatment. These findings indicated that high-intensity resistance exercise contributed to dyslipidemia in hamsters fed a hypercholesterolemic diet, whereas liver function enzymes did not differ in regards to the exercise protocol.
Resumo:
We investigated the effects of high pressure on the point of no return or the minimum time required for a kicker to respond to the goalkeeper's dive in a simulated penalty kick task. The goalkeeper moved to one side with different times available for the participants to direct the ball to the opposite side in low-pressure (acoustically isolated laboratory) and high-pressure situations (with a participative audience). One group of participants showed a significant lengthening of the point of no return under high pressure. With less time available, performance was at chance level. Unexpectedly, in a second group of participants, high pressure caused a qualitative change in which for short times available participants were inclined to aim in the direction of the goalkeeper's move. The distinct effects of high pressure are discussed within attentional control theory to reflect a decreasing efficiency of the goal-driven attentional system, slowing down performance, and a decreasing effectiveness in inhibiting stimulus-driven behavior.
Resumo:
VIEIRA, R. D. P., A. C. TOLEDO, L. B. SILVA, F. M. ALMEIDA, N. R. DAMACENO-RODRIGUES, E. G. CALDINI, A. B. G. SANTOS, D. H. RIVERO, D. C. HIZUME, F. D. T. Q. S. LOPES, C. R. OLIVO, H. C. CASTRO-FARIA-NETO, M. A. MARTINS, P. H. N. SALDIVA, and M. DOLHNIKOFF. Anti-inflammatory Effects of Aerobic Exercise in Mice Exposed to Air Pollution. Med. Sci. Sports Exerc., Vol. 44, No. 7, pp. 1227-1234, 2012. Purpose: Exposure to diesel exhaust particles (DEP) results in lung inflammation. Regular aerobic exercise improves the inflammatory status in different pulmonary diseases. However, the effects of long-term aerobic exercise on the pulmonary response to DEP have not been investigated. The present study evaluated the effect of aerobic conditioning on the pulmonary inflammatory and oxidative responses of mice exposed to DEP. Methods: BALB/c mice were subjected to aerobic exercise five times per week for 5 wk, concomitantly with exposure to DEP (3 mg.mL (1); 10 mu L per mouse). The levels of exhaled nitric oxide, reactive oxygen species, cellularity, interleukin 6 (IL-6), and tumor necrosis factor alpha (TNF-alpha) were analyzed in bronchoalveolar lavage fluid, and the density of neutrophils and the volume proportion of collagen fibers were measured in the lung parenchyma. The cellular density of leukocytes expressing IL-1 beta, keratinocyte chemoattractant (KC), and TNF-alpha in lung parenchyma was evaluated with immunohistochemistry. The levels of IL-1 beta, KC, and TNF-alpha were also evaluated in the serum. Results: Aerobic exercise inhibited the DEP-induced increase in the levels of reactive oxygen species (P < 0.05); exhaled nitric oxide (P < 0.01); total (P < 0.01) and differential cells (P < 0.01); IL-6 and TNF-alpha levels in bronchoalveolar lavage fluid (P < 0.05); the level of neutrophils (P < 0.001); collagen density in the lung parenchyma (P < 0.05); the levels of IL-6, KC, and TNF-alpha in plasma (P < 0.05); and the expression of IL-1 beta, KC, and TNF-alpha by leukocytes in the lung parenchyma (P < 0.01). Conclusions: We conclude that long-term aerobic exercise presents protective effects in a mouse model of DEP-induced lung inflammation. Our results indicate a need for human studies that evaluate the pulmonary responses to aerobic exercise chronically performed in polluted areas.
Resumo:
Background: Heart failure (HF) is known to lead to skeletal muscle atrophy and dysfunction. However, intracellular mechanisms underlying HF-induced myopathy are not fully understood. We hypothesized that HF would increase oxidative stress and ubiquitin-proteasome system (UPS) activation in skeletal muscle of sympathetic hyperactivity mouse model. We also tested the hypothesis that aerobic exercise training (AET) would reestablish UPS activation in mice and human HF. Methods/Principal Findings: Time-course evaluation of plantaris muscle cross-sectional area, lipid hydroperoxidation, protein carbonylation and chymotrypsin-like proteasome activity was performed in a mouse model of sympathetic hyperactivity-induced HF. At the 7th month of age, HF mice displayed skeletal muscle atrophy, increased oxidative stress and UPS overactivation. Moderate-intensity AET restored lipid hydroperoxides and carbonylated protein levels paralleled by reduced E3 ligases mRNA levels, and reestablished chymotrypsin-like proteasome activity and plantaris trophicity. In human HF (patients randomized to sedentary or moderate-intensity AET protocol), skeletal muscle chymotrypsin-like proteasome activity was also increased and AET restored it to healthy control subjects' levels. Conclusions: Collectively, our data provide evidence that AET effectively counteracts redox imbalance and UPS overactivation, preventing skeletal myopathy and exercise intolerance in sympathetic hyperactivity-induced HF in mice. Of particular interest, AET attenuates skeletal muscle proteasome activity paralleled by improved aerobic capacity in HF patients, which is not achieved by drug treatment itself. Altogether these findings strengthen the clinical relevance of AET in the treatment of HF.
Resumo:
The aim of this study was to investigate the methods adopted to reduce body mass (BM) in competitive athletes from the grappling (judo, jujitsu) and striking (karate and tae kwon do) combat sports in the state of Minas Gerais, Brazil. An exploratory methodology was employed through descriptive research, using a standardized questionnaire with objective questions self-administered to 580 athletes (25.0 +/- 3.7 yr, 74.5 +/- 9.7 kg, and 16.4% +/- 5.1% body fat). Regardless of the sport, 60% of the athletes reported using a method of rapid weight loss (RWL) through increased energy expenditure. Strikers tend to begin reducing BM during adolescence. Furthermore, 50% of the sample used saunas and plastic clothing, and only 26.1% received advice from a nutritionist. The authors conclude that a high percentage of athletes uses RWL methods. In addition, a high percentage of athletes uses unapproved or prohibited methods such as diuretics, saunas, and plastic clothing. The age at which combat sport athletes reduce BM for the first time is also worrying, especially among strikers.
Resumo:
Dilthey claimed that first psychology and then hermeneutics played the foundational role for his philosophy of life, whose main practical goal is to develop a pedagogy or theory of education. Pedagogy needs help from h ethics to establish its ends, and from psychology to indicate it means. This paper intends to show the relationship between Dilthey's hermeneutics of life and his pedagogy. Dilthey's philosophy of life, in so far it adopts the hermeneutical procedure, engages in the understanding of or the search for the meaning of human socio-historical creations, by adopting a special type of relationship between parts and whole. It is exactly within this hermeneutical balance that we propose to extinguish any indication of a rupture, breach, or contradiction between the quest for universal principles of human behavior and :Dilthey's defense of the impossibility of constructing human moral tasks by means of universal principles. Dilthey began his ethics lectures at the University of Berlin in 1890. These lectures, published in 1958 by Herman Nohl in volume X of Dilthey's collected works, indicate the direction of the trajectory by which formative or social ethics are consolidated as a historical solution for reaching universal principles that can guide human purposes. This trajectory is a result of the distinctively human exercise of self-reflection, by means of which we can fulfill our destiny of manifesting and exteriorizing in time the immanent energy of the absolute spirit. We wish to show that it is possible that such a pedagogy can respect its universal task of orienting the historical development of the younger generation without directing this process by means of fixed and rigid aims.
Resumo:
NAKAGAWA, T. H., E. T. U. MORIYA, C. D. MACIEL, and F. V. SERRAO. Frontal Plane Biomechanics in Males and Females with and without Patellofemoral Pain. Med. Sci. Sports &ere., Vol. 44, No. 9, pp. 1747-1755, 2012. Purpose: The study's purpose was to compare trunk, pelvis, hip, and knee frontal plane biomechanics in males and females with and without patellofemoral pain syndrome (PFPS) during stepping. Methods: Eighty recreational athletes were equally divided into four groups: female PFPS, female controls, male PFPS, and male controls. Trunk, pelvis, hip, and knee frontal plane kinematics and activation of the gluteus medius were evaluated at 15 degrees, 30 degrees, 45 degrees, and 60 degrees of knee flexion during the downward and upward phases of the stepping task. Isometric hip abductor torque was also evaluated. Results: Females showed increased hip adduction and knee abduction at all knee flexion angles, greater ipsilateral trunk lean and contralateral pelvic drop from 60 degrees of knee flexion till the end of the stepping task (P = 0.027-0.001), diminished hip abductor torque (P < 0.001), and increased gluteus medius activation than males (P = 0.008-0.001). PFPS subjects presented increased knee abduction at all the angles evaluated; greater trunk, pelvis, and hip motion from 45 of knee flexion of the downward phase till the end of the maneuver; and diminished gluteus medius activation at 60 degrees of knee flexion, compared with controls (P = 0.034-0.001). Females with PFPS showed lower hip abductor torque compared with the other groups. Conclusions: Females presented with altered frontal plane biomechanics that may predispose them to knee injury. PFPS subjects showed frontal plane biomechanics that could increase the lateral patellofemoral joint stress at all the angles evaluated and could increase even more from 45 degrees of knee flexion in the downward phase untill the end of the maneuver. Hip abductor strengthening and motor control training should be considered when treating females with PFPS.
Resumo:
DA SILVA, N. D. JR, T. FERNANDES, U. P. R. SOCI, A. W. A. MONTEIRO, M. I. PHILLIPS, and E. M. DE OLIVEIRA. Swimming Training in Rats Increases Cardiac MicroRNA-126 Expression and Angiogenesis. Med. Sci. Sports Exerc., Vol. 44, No. 8, pp. 1453-1462, 2012. Purpose: MicroRNA (miRNA)-126 is angiogenic and has two validated targets: Sprouty-related protein 1 (Spred-1) and phosphoinositol-3 kinase regulatory subunit 2 (PI3KR2), negative regulators of angiogenesis by VEGF pathway inhibition. We investigated the role of swimming training on cardiac miRNA-126 expression related to angiogenesis. Methods: Female Wistar rats were assigned to three groups: sedentary (S), training 1 (T1, moderate volume), and training 2 (T2, high volume). T1 consisted of 60 min.d(-1) of swimming, five times per week for 10 wk with 5% body overload. T2 consisted of the same protocol of T1 until the eighth week; in the ninth week, rats trained for two times a day, and in the 10th week, rats trained for three times a day. MiRNA and PI3KR2 gene expression analysis was performed by real-time polymerase chain reaction in heart muscle. We assessed markers of training, the cardiac capillary-fiber ratio, cardiac protein expression of VEGF, Spred-1, Raf-1/ERK 1/2, and PI3K/Akt/eNOS. Results: The cardiac capillary-fiber ratio increased in T1 (58%) and T2 (101%) compared with S. VEGF protein expression was increased 42% in T1 and 108% in T2. Cardiac miRNA-126 expression increased 26% (T1) and 42% (T2) compared with S, correlated with angiogenesis. The miRNA-126 target Spred-1 protein level decreased 41% (T1) and 39% (T2), which consequently favored an increase in angiogenic signaling pathway Raf-1/ERK 1/2. On the other hand, the gene expression of PI3KR2, the other miRNA-126 target, was reduced 39% (T1) and 78% (T2), and there was an increase in protein expression of components of the PI3K/Akt/eNOS signaling pathway in the trained groups. Conclusions: This study showed that aerobic training promotes an increase in the expression of miRNA-126 and that this may be related to exercise-induced cardiac angiogenesis, by indirect regulation of the VEGF pathway and direct regulation of its targets that converged in an increase in angiogenic pathways, such as MAPK and PI3K/Akt/eNOS.
Resumo:
Background: Exercise training is a non-pharmacological strategy for treatment of heart failure. Exercise training improves functional capacity and quality of life in patients. Moreover, exercise training reduces muscle sympathetic nerve activity (MSNA) and peripheral vasoconstriction. However, most of these studies have been conducted in middle-aged patients. Thus, the effects of exercise training in older patients are much less understood. The present study was undertaken to investigate whether exercise training improves functional capacity, muscular sympathetic activation and muscular blood flow in older heart failure patients, as it does in middle-aged heart failure patients. Design: Fifty-two consecutive outpatients with heart failure from the database of the Unit of Cardiovascular Rehabilitation and Physiology Exercise were divided by age (middle-aged, defined as 45-59 years, and older, defined as 60-75 years) and exercise status (trained and untrained). Methods: MSNA was recorded directly from the peroneal nerve using the microneurography technique. Forearm Blood Flow (FBF) was measured by venous occlusion plethysmography. Functional capacity was evaluated by cardiopulmonary exercise test. Results: Exercise training significantly and similarly increased FBF and peak VO2 in middle-aged and older heart failure patients. In addition, exercise training significantly and similarly reduced MSNA and forearm vascular resistance in these patients. No significant changes were found in untrained patients. Conclusion: Exercise training improves neurovascular control and functional capacity in heart failure patients regardless of age.
Resumo:
Aerobic conditioning (AC) performed either during or after sensitization reduces allergic inflammation in mice; however, the effects of AC performed before and during allergic sensitization on airway inflammation are unknown. Mice were divided into Control, AC, OVA, and AC + OVA groups. Mice were trained in a treadmill followed by either ovalbumin (OVA) sensitization or saline administration. Peribronchial inflammation, OVA-specific IgE and IgG1 titers, the expression of Th1 and Th2 cytokines, and airway remodeling were evaluated, as well as the expression of Eotaxin, RANTES, ICAM-1, VCAM-1, TGF-beta and VEGF. Aerobic conditioning performed before and during allergic sensitization displayed an inhibitory effect on the OVA-induced migration of eosinophils and lymphocytes to the airways, a reduction of IgE and IgG1 titers and an inhibition of the expression of Th2 cytokines. The AC + OVA group also demonstrated reduced expression of ICAM-1, VCAM-1, RANTES, TGF-beta and VEGF, as well as decreased airway remodeling (p < 0.05). The effects of AC before and during the sensitization process inhibit allergic airway inflammation and reduce the production of Th2 cytokines and allergen-specific IgE and IgG1.