2 resultados para Spiral model
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Male coleoid cephalopods produce spermatophores that can attach autonomously on the female's body during a complex process of evagination called the spermatophoric reaction, during which the ejaculatory apparatus and spiral filament of the spermatophore are everted and exposed to the external milieu. In some deepwater cephalopods, the reaction leads to the intradermal implantation of the spermatophore, a hitherto enigmatic phenomenon. The present study builds upon several lines of evidence to propose that spermatophore implantation is probably achieved through the combination of (1) an evaginating-tube mechanism performed by the everting ejaculatory apparatus and (2) the anchorage provided by the spiral filament's stellate particles. The proposed theoretical model assumes that, as it is exposed to the external milieu, each whorl of the spiral filament anchors to the surrounding tissue by means of its sharp stellate particles. As the ejaculatory apparatus tip continues evaginating, it grows in diameter and stretches lengthwise, enlarging the diameter of the whorl and propelling it, consequently tearing and pushing the anchored tissue outward and backward, and opening space for the next whorl to attach. After the ejaculatory apparatus has been everted and has perforated tissue, the cement body is extruded, possibly aiding in final attachment, and the sperm mass comes to lie inside the female tissue, encompassed by the everted ejaculatory apparatus tube. It is proposed that this unique, efficient spermatophore attachment mechanism possibly evolved in intimate relationship with the adoption of an active mode of life by coleoids. The possible roles of predation pressure and sperm competition in the evolution of this mechanism are also discussed. (c) 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 105, 711726.
Resumo:
We revisit the issue of the constancy of the dark matter (DM) and baryonic Newtonian acceleration scales within the DM scale radius by considering a large sample of late-type galaxies. We rely on a Markov Chain Monte Carlo method to estimate the parameters of the halo model and the stellar mass-to-light ratio and then propagate the uncertainties from the rotation curve data to the estimate of the acceleration scales. This procedure allows us to compile a catalogue of 58 objects with estimated values of the B-band absolute magnitude M-B, the virial mass M-vir, and the DM and baryonic Newtonian accelerations (denoted as g(DM)(r(0)) and g(bar)(r(0)), respectively) within the scale radius r(0) which we use to investigate whether it is possible to define a universal acceleration scale. We find a weak but statistically meaningful correlation with M-vir thus making us argue against the universality of the acceleration scales. However, the results somewhat depend on the sample adopted so that a careful analysis of selection effects should be carried out before any definitive conclusion can be drawn.