10 resultados para Spines
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
The sea urchin, Echinometra lucunter, can be found along the Western Central Atlantic shores. In Brazil, it is responsible by circa 50% of the accidents caused by marine animals. The symptoms usually surpass trauma and may be pathologically varied and last differently, ranging from spontaneous healing in a few days, to painful consequences lasting for weeks. In this work, we have mimicked the sea urchin accident by administering an aqueous extract of the spine into mice and rats and evaluated the pathophysiological developments. Our data clearly indicate that the sea urchin accident is indeed a pro-inflammatory event, triggered by toxins present in the spine that can cause edema and alteration in the leukocyte-endothelial interaction. Moreover, the spine extract was shown to exhibit a hyperalgesic effect. The extract is rich in proteins, as observed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, but also contains other molecules that can be analyzed by reversed phase high-performance liquid chromatography. Altogether, these effects corroborate that an E. lucunter encounter is an accident and not an incident, as frequently reported by the victims.
Resumo:
Trichomycterus crassicaudatus is described as a new species from the Rio Iguacu basin in southern Brazil. The new species has an exceptionally deep posterior region of the body (caudal peduncle depth 22.8-25.4% SL), resulting in an overall shape which distinguishes it at once from all other members of the Trichomycteridae. The caudal fin of the species is broad-based and forked, a shape also distinguishing it from all other species in the family. A number of autapomorphic modifications of T. crassicaudatus are associated with the deepening of the caudal region, including an elongation of the hemal and neural spines of the vertebrae at the middle of the caudal peduncle. Phylogenetic relationships of the new species are yet unresolved, but it shares a similar color pattern and a thickening of caudal-fin procurrent rays with T. stawiarski, a poorly-known species also from the Rio Iguacu basin. Coloration and body shape also include similarities with T. lewi from Venezuela.
Resumo:
Phallobrycon adenacanthus, is described as a new genus and species belonging to Clade A characids of Malabarba & Weitzman (2003). The new taxon is the only characid possessing two developed spines on unbranched portions of fifth, sixth and seventh anal-fin rays associated with intumescent glandular tissue on the anterior portion of the anal fin of sexually mature males. Other non-exclusive diagnostic features of the new genus (observed in male specimens) are: urogenital papilla modified into a copulatory organ, absence of pelvic-fin hooks and glandular tissue not organized into an organ. The presence of these features in members of Clade A and other characids is discussed in order to hypothesize the relationships of Phallobrycon.
Resumo:
Approximately 800 species of phlebotomine sand flies, many of which are vectors of Leishmania, have been described. Besides morphological similarities within groups, the occurrence of anomalies within a species may lead to an erroneous description of new species. This paper describes one phlebotomine sand fly, Evandromyia evandroi, with a symmetrical bilateral anomaly in the number of spines on the gonostyle. In this specimen, the anomalous spine is located in the external region of gonostyle, inserted between the upper external and the lower external spines. It is important to document morphological anomalies, so as to avoid erroneous sand fly identifications.
Resumo:
The immatures of Polybia paulista Ihering were described using light and scanning electron microscopy and the results are compared with previous descriptions within the same or related wasps. This study is based on 2 whole nests collected in the municipality of Rio Claro, Sao Paulo, in Brazil. We have detected the existence of 5 larval instars. The main morphological alterations over development occur in the relative size of structures, yet certain structures appear with subsequent instars and become more evident later in development: increasing density in the number of body spines and papillae; the appearance of body setae in fifth-instar larvae; opening of spiracles upon second-instar larvae; 2 body shapes in fifth-instar larvae; the appearance of a lateral tooth on the mandibles of fourth instar; presence of spines on the maxillae of fifth-instar larvae; altered shape of galea and palps upon third-instar larvae from a cluster of sensilla to a conical elevation; and the appearance of spines on postmentum upon fourth-instar larvae. This way, the present study presents a detailed description of the immatures of P. paulista, and we hope the presented information can be useful to morphological, taxonomic, and phylogenetic studies.
Resumo:
We describe a new species of bufonid from a lowland, sandy soil, restinga habitat in the state of Espirito Santo, southeastern Brazil. Based on the shared occurrence of putative morphological synapomorphies of Melanophryniscus and the results of a phylogenetic analysis of DNA sequences of a broad sample of bufonids, and other anurans, we assign the new species to Melanophryniscus. The new species possesses several peculiar character states that distinguish it from all other Melanophryniscus including, but not limited to: fingers II, III, and V much reduced; nuptial pad with few enlarged, brown-colored spines on medial margin of finger II; seven presacral vertebrae, the last fused with the sacrum; and ventral humeral crest prominent, forming a spinelike projection.
Resumo:
Plant mines are structures with the form of a cavity caused by consumption of host plant tissue by the insect's miner larvae. Plant mines are more common in leaves, but in Cipocereus minensis, a species in which the leaves are modified spines, the miner activity is restricted to the stem. The aim of this paper was to document the morphological and anatomical differences in the infected and uninfected stems of C. minensis due to the feeding habit of the mining agent. Fresh tissue samples of non-mined and mined young stem of C minensis were collected and examined in transverse sections. We hypothesize that the infection begins following mating when the females scratch the surface of the stem or while they feed on fruits and lay eggs, which subsequently develop into larvae, invading the cactus stem. The insect's miner larvae had mostly consumed the parenchyma tissue towards the center of the stem, and periderm formed along the entire path of the insect. This meristematic tissue or "wound periderm" is a common response for compartmentalization to isolate the damaged tissue, in this case the incubating chamber, in which the eggs will be placed. There were no signs of consumption of vascular tissue in the infested samples, further suggesting a compartmentalized infestation. The nest chamber was found in the stem pith region, with periderm surrounding an insect's miner pupa inside identified as a member of the Cerambycidae. The mining insect depends on a host plant to complete the life cycle; however, the nature of this partnership and the long-term effects of the insect on the plant tissue are unknown. The complex mechanisms by which herbivorous insects control the morphogenesis of the plant host are discussed. We propose that C. minensis has a recognition system to identify insect attack and evaluate the effectiveness of early response triggering compartmentalized defense mechanisms by protecting the injured area with a new layer of periderm.
Resumo:
We have conducted a morphological study of the ampullae of Lorenzini on two shark species from Squatina Genus. In both species, S. guggenheim and S. occulta, the ampullae were observed like small pores scattered in the head region similar to other species of the Chondrichthyes Class. However, differently of the other species a greatest density of ampullae of Lorenzini was observed along of the body surface. After fixation using 10% formaldehyde, the ampullae were removed and processed for light and scanning electron microscopy. Macroscopically, the two shark species differed by the presence of dorsal spines that appeared from the head to the first dorsal fin in S. guggenheim and were absent in S. occulta. Microscopically, there were no differences between the ampullae of Lorenzini channels in these two species. The wall of the ampulla was formed by a simple squamous epithelium. Bands of connective tissue, hyaline cartilage and collagen fibers were found between the ampulla and the skeletal striated muscle layer. Nerve branches responsible for conducting signal pulses to the central nervous system were visible between the muscle and connective tissue layers. Using scanning electron microscopy and histological analysis, we found that the channels were twisted and positioned parallel to the skin. The inside of the channels contained a large amount of a gelatinous secretion composed by polysaccharides. Therefore, we conclude that the morphological combination of extended distribution of the ampullae of Lorenzini and the body shape may represent an adaptation of these species to their way of life. Microsc. Res. Tech. 75:12131217, 2012. (C) 2012 Wiley Periodicals, Inc.
Resumo:
The final instar larva of Mnesarete pudica is described and illustrated based on reared specimens collected in Brazil. This species can be distinguished from others by presenting: a) five palpal and three premental setae; b) no posterodorsal hooks on abdominal segments; c) lateral spines only in S9-10. M. pudica is compared to other South American calopterygids and biological notes are presented.
Resumo:
Libinia spinosa H. Milne Edwards in Guérin, 1832 and L. ferreirae Brito Capello, 1871, inhabit very similar environments, and their geographic and bathymetric distributions overlap for about 3000 km along the southwestern Atlantic. Both species are commonly caught in the same haul and differentiating between them can often be difficult. Traditionally, morphological differentiation between L. spinosa and L. ferreirae has been based exclusively on the number of spines along the median, longitudinal line of the carapace and the development of a process at the anterolateral angle of the basal segment of the antenna. Because Libinia spinosa and L. ferreirae share similar numbers of median spines (7 and 6, respectively), and the number of median spines of the carapace and the process at the anterolateral angle of the basal antennal segment are variable, they are of little value in separating these species. It is shown herein that unequivocal identification can be easily achieved based on features of the male and female thoracic sternum, pereiopod dactyli, and infraorbital notch. A lectotype is designated for L. spinosa and its authorship and date are corrected. Libinia gibbosa A. Milne-Edwards, 1878, is demonstrated to be a junior synonym of L. ferreirae. The holotype of L. gibbosa is figured for the first time.