13 resultados para Spindle Disruption

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mutations in the coding region of telomerase complex genes can result in accelerated telomere attrition and human disease. Manifestations of telomere disease include the bone marrow failure syndromes dyskeratosis congenita and aplastic anemia, acute myeloid leukemia, liver cirrhosis, and pulmonary fibrosis. Here, we describe a mutation in the CCAAT box (GCAAT) of the TERC gene promoter in a family in which multiple members had typical features of telomeropathy. The genetic alteration in this critical regulatory sequence resulted in reduced reporter gene activity and absent binding of transcription factor NF-Y, likely responsible for reduced TERC levels, decreased telomerase activity, and short telomeres. This is the first description of a pathogenic mutation in the highly con-served CCAAT box and the first instance of a mutation in the promoter region of TERC producing a telomeropathy. We propose that current mutation-screening strategies should include gene promoter regions for the diagnosis of telomere diseases. This clinical trial was registered at www.clinicaltrials.gov as #NCT00071045. (Blood. 2012;119(13):3060-3063)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The search for reconsolidation blockers may uncover clinically relevant drugs for disrupting memories of significant stressful life experiences, such as those underlying the posttraumatic stress disorder. Considering the safety of systemically administered cannabidiol (CBD), the major non-psychotomimetic component of Cannabis sativa, to animals and humans, the present study sought to investigate whether and how this phytocannabinoid (3-30 mg/kg intraperitoneally; i.p.) could mitigate an established memory, by blockade of its reconsolidation, evaluated in a contextual fear-conditioning paradigm in rats. We report that CBD is able to disrupt 1- and 7-days-old memories when administered immediately, but not 6 h, after their retrieval for 3 min, with the dose of 10 mg/kg being the most effective. This effect persists in either case for at least 1 week, but is prevented when memory reactivation was omitted, or when the cannabinoid type-1 receptors were antagonized selectively with AM251 (1.0 mg/kg). Pretreatment with the serotonin type-1A receptor antagonist WAY100635, however, failed to block CBD effects. These results highlight that recent and older fear memories are equally vulnerable to disruption induced by CBD through reconsolidation blockade, with a consequent long-lasting relief in contextual fear-induced freezing. Importantly, this CBD effect is dependent on memory reactivation, restricted to time window of <6h, and is possibly dependent on cannabinoid type-1 receptor-mediated signaling mechanisms. We also observed that the fear memories disrupted by CBD treatment do not show reinstatement or spontaneous recovery over 22 days. These findings support the view that reconsolidation blockade, rather than facilitated extinction, accounts for the aforementioned CBD results in our experimental conditions. Neuropsychopharmacology (2012) 37, 2132-2142; doi:10.1038/npp.2012.63; published online 2 May 2012

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: To compare the polymerization status of mouse oocyte spindles exposed to various temperatures at various stages of meiosis. Design: Experimental animal study. Setting: University animal laboratory. Animal(s): CF1 mice. Intervention(s): Immature oocytes matured to metaphase I (MI), telophase I (TI), and metaphase II (MII) were incubated at 37 degrees C (control), room temperature (RT), or 4 degrees C for 0, 10, 30, and 60 minutes. Spindle analysis subsequently was performed using polarized field microscopy and immunocytochemistry. Spindles of TI and MII oocytes that underwent vitrification and warming were analyzed also by immunocytochemistry. Main Outcome Measure(s): Detection of polymerized meiotic spindles. Result(s): At RT, and after 60 minutes at 4 degrees C, a significant time-dependent decrease in the percentage of polymerized meiotic spindles was observed in MI and MII oocytes, but not in TI oocytes. The polymerization of TI spindles at 4 degrees C was similar to that of TI spindles at 4 degrees C that underwent vitrification and warming. Conclusion(s): Significant differences in the microtubule dynamics of MI, TI, and MII oocytes incubated at different temperatures were observed. In particular, meiotic spindles in TI oocytes exhibited less depolymerization than did metaphase spindles. (Fertil Steril (R) 2012; 97: 714-9. (C) 2012 by American Society for Reproductive Medicine.)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chronic Chagas cardiomyopathy evolves over a long period of time after initial infection by Trypanosoma cruzi. Similarly, a cardiomyopathy appears later in life in muscular dystrophies. This study tested the hypothesis that dystrophin levels are decreased in the early stage of T cruzi-infected mice that precedes the later development of a cardiomyopathy. CD1 mice were infected with T cruzi (Brazil strain), killed at 30 and 100 days post infection (dpi), and the intensity of inflammation, percentage of interstitial fibrosis, and dystrophin levels evaluated. Echocardiography and magnetic resonance imaging data were evaluated from 15 to 100 dpi. At 30 dpi an intense acute myocarditis with ruptured or intact intracellular parasite nests was observed. At 100 dpi a mild chronic fibrosing myocarditis was detected without parasites in the myocardium. Dystrophin was focally reduced or completely lost in cardiomyocytes at 30 dpi, with the reduction maintained up to 100 dpi. Concurrently, ejection fraction was reduced and the right ventricle was dilated. These findings support the hypothesis that the initial parasitic infection-induced myocardial dystrophin reduction/loss, maintained over time, might be essential to the late development of a cardiomyopathy in mice. (C) 2011 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Myocardial remodeling and heart failure (HF) are common sequelae of many forms of cardiovascular disease and a leading cause of mortality worldwide. Accumulation of damaged cardiac proteins in heart failure has been described. However, how protein quality control (PQC) is regulated and its contribution to HF development are not known. Here, we describe a novel role for activated protein kinase C isoform beta II (PKC beta II) in disrupting PQC. We show that active PKC beta II directly phosphorylated the proteasome and inhibited proteasomal activity in vitro and in cultured neonatal cardiomyocytes. Importantly, inhibition of PKC beta II, using a selective PKC beta II peptide inhibitor (beta IIV5-3), improved proteasomal activity and conferred protection in cultured neonatal cardiomyocytes. We also show that sustained inhibition of PKC beta II increased proteasomal activity, decreased accumulation of damaged and misfolded proteins and increased animal survival in two rat models of HF. Interestingly, beta IIV5-3-mediated protection was blunted by sustained proteasomal inhibition in HF. Finally, increased cardiac PKC beta II activity and accumulation of misfolded proteins associated with decreased proteasomal function were found also in remodeled and failing human hearts, indicating a potential clinical relevance of our findings. Together, our data highlights PKC beta II as a novel inhibitor of proteasomal function. PQC disruption by increased PKC beta II activity in vivo appears to contribute to the pathophysiology of heart failure, suggesting that PKC beta II inhibition may benefit patients with heart failure. (218 words)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Leishmaniasis and Chagas disease are parasitic protozoan infections that affect the poorest population in the world, causing high mortality and morbidity. As a result of highly toxic and long-duration treatments, novel, safe and more efficacious drugs are essential. In this work, the methanol (MeOH) extract from the leaves of Piper malacophyllum (Piperaceae) was fractioned to afford one alkenylphenol, which was characterized as 4-[(3'E)-decenyl]phenol (gibbilimbol B) by spectroscopic methods. Anti-protozoan in vitro assays demonstrated for the first time that Leishmania (L.) infantum chagasi was susceptible to gibbilimbol B. with an in vitro EC50 of 23 mu g/mL against axenic promastigotes and an EC50 of 22 mu g/mL against intracellular amastigotes. Gibbilimbol B was also tested for anti-trypanosomal activity (Trypanosoma cruzi) and showed an EC50 value of 17 mu g/mL against trypomastigotes. To evaluate the cytotoxic parameters, this alkenylphenol was tested in vitro against NCTC cells, showing a CC50 of 59 mu g/mL and absent hemolytic activity at the highest concentration of 75 mu g/mL. Using the fluorescent probe SYTOX Green suggested that the alkenylphenol disrupted the Leishmania plasma membrane upon initial incubation. Further drug design studies aiming at derivatives could be a promising tool for the development of new therapeutic agents for leishmaniasis and Chagas disease. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Germline and early embryo development constitute ideal model systems to study the establishment of polarity, cell identity, and asymmetric cell divisions (ACDs) in plants. We describe here the function of the MATH-BTB domain protein MAB1 that is exclusively expressed in the germ lineages and the zygote of maize (Zea mays). mab1 (RNA interference [RNAi]) mutant plants display chromosome segregation defects and short spindles during meiosis that cause insufficient separation and migration of nuclei. After the meiosis-to-mitosis transition, two attached nuclei of similar identity are formed in mab1 (RNAi) mutants leading to an arrest of further germline development. Transient expression studies of MAB1 in tobacco (Nicotiana tabacum) Bright Yellow-2 cells revealed a cell cycle-dependent nuclear localization pattern but no direct colocalization with the spindle apparatus. MAB1 is able to form homodimers and interacts with the E3 ubiquitin ligase component Cullin 3a (CUL3a) in the cytoplasm, likely as a substrate-specific adapter protein. The microtubule-severing subunit p60 of katanin was identified as a candidate substrate for MAB1, suggesting that MAB1 resembles the animal key ACD regulator Maternal Effect Lethal 26 (MEL-26). In summary, our findings provide further evidence for the importance of posttranslational regulation for asymmetric divisions and germline progression in plants and identified an unstable key protein that seems to be involved in regulating the stability of a spindle apparatus regulator(s).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The current study examined the role of PLD2 in the maintenance of mast cell structure. Phospholipase D (PLD) catalyzes hydrolysis of phosphatidylcholine to produce choline and phosphatidic acid (PA). PLD has two isoforms, PLD1 and PLD2, which vary in expression and localization depending on the cell type. The mast cell line RBL-2H3 was transfected to overexpress catalytically active (PLD2CA) and inactive (PLD2CI) forms of PLD2. The results of this study show that PLD2CI cells have a distinct star-shaped morphology, whereas PLD2CA and RBL-2H3 cells are spindle shaped. In PLD2CI cells, the Golgi complex was also disorganized with dilated cisternae, and more Golgi-associated vesicles were present as compared with the PLD2CA and RBL-2H3 cells. Treatment with exogenous PA led to the restoration of the wild-type Golgi complex phenotype in PLD2CI cells. Conversely, treatment of RBL-2H3 and PLD2CA cells with 1% 1-Butanol led to a disruption of the Golgi complex. The distribution of acidic compartments, including secretory granules and lysosomes, was also modified in PLD2CI cells, where they concentrated in the perinuclear region. These results suggest that the PA produced by PLD2 plays an important role in regulating cell morphology in mast cells. (J Histochem Cytochem 60:386-396, 2012)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glucose metabolism and insulin signaling disruptions in the brain have been proposed as a likely etiology of Alzheimer's disease. The aim of the present study was to investigate the time course of cognitive impairments induced by intracerebroventricular injection of streptozotocin (STZ) in rats and correlate them with the ensuing neurodegenerative process. Early and late effects of STZ were evaluated by using the reference and working memory versions of the Morris' water maze task and the evaluation of neurodegenerative markers by immunoblotting and the Fluoro-jade C histochemistry. The results revealed different types of behavioral and neurodegenerative responses, with distinct time courses. We observed an early disruption on the working memory as early as 3 h after STZ injections, which was followed by degenerative processes in the hippocampus at 1 and 15 days after STZ injections. Memory disruption increases over time and culminates with significant changes in amyloid-beta peptide and hyperphosphorylated Tau protein levels in distinct brain structures. These findings add information on the Alzheimer's disease-like STZ animal model and on the mechanisms underlying neurodegenerative processes. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract Background The ability to manipulate the genetic networks underlying the physiological and behavioural repertoires of the adult honeybee worker (Apis mellifera) is likely to deepen our understanding of issues such as learning and memory generation, ageing, and the regulatory anatomy of social systems in proximate as well as evolutionary terms. Here we assess two methods for probing gene function by RNA interference (RNAi) in adult honeybees. Results The vitellogenin gene was chosen as target because its expression is unlikely to have a phenotypic effect until the adult stage in bees. This allowed us to introduce dsRNA in preblastoderm eggs without affecting gene function during development. Of workers reared from eggs injected with dsRNA derived from a 504 bp stretch of the vitellogenin coding sequence, 15% had strongly reduced levels of vitellogenin mRNA. When dsRNA was introduced by intra-abdominal injection in newly emerged bees, almost all individuals (96 %) showed the mutant phenotype. An RNA-fragment with an apparent size similar to the template dsRNA was still present in this group after 15 days. Conclusion Injection of dsRNA in eggs at the preblastoderm stage seems to allow disruption of gene function in all developmental stages. To dissect gene function in the adult stage, the intra-abdominal injection technique seems superior to egg injection as it gives a much higher penetrance, it is much simpler, and it makes it possible to address genes that are also expressed in the embryonic, larval or pupal stages.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A mucinous tubular and spindle cell carcinoma (MTSCC) is a rare and recently described kidney neoplasm with distal nephron differentiation. It can affect patients of all ages and is more prevalent among women. In this case report, we present a 50-year-old woman who had a renal mass, which was accidently discovered during an investigation for chronic anemia. The final diagnosis of MTSCC was made after the lesion was removed and a pathology work-up was performed. The clinical, pathological and imaging findings of this rare neoplasm are described in this report.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Anticancer activities of cinnamic acid derivatives include induction of apoptosis by irreversible DNA damage leading to cell death. The present work aimed to compare the cytotoxic and genotoxic potential of cinnamic acid in human melanoma cell line (HT-144) and human melanocyte cell line derived from blue nevus (NGM). Viability assay showed that the IC50 for HT-144 cells was 2.4 mM, while NGM cells were more resistant to the treatment. The growth inhibition was probably associated with DNA damage leading to DNA synthesis inhibition, as shown by BrdU incorporation assay, induction of nuclear aberrations and then apoptosis. The frequency of cell death caused by cinnamic acid was higher in HT-144 cells. Activated-caspase 3 staining showed apoptosis after 24 hours of treatment with cinnamic acid 3.2 mM in HT-144 cells, but not in NGM. We observed microtubules disorganization after cinnamic acid exposure, but this event and cell death seem to be independent according to M30 and tubulin labeling. The frequency of micronucleated HT-144 cells was higher after treatment with cinnamic acid (0.4 and 3.2 mM) when compared to the controls. Cinnamic acid 3.2 mM also increased the frequency of micronucleated NGM cells indicating genotoxic activity of the compound, but the effects were milder. Binucleation and multinucleation counting showed similar results. We conclude that cinnamic acid has effective antiproliferative activity against melanoma cells. However, the increased frequency of micronucleation in NGM cells warrants the possibility of genotoxicity and needs further investigation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The timing of larval release may greatly affect the survivorship and distribution of pelagic stages and reveal important aspects of life history tactics in marine invertebrates. Endogenous rhythms of breeding individuals and populations are valuable indicators of selected strategies because they are free of the neutral effect of stochastic environmental variation. The high-shore intertidal barnacle Chthamalus bisinuatus exhibits endogenous tidal and tidal amplitude rhythms in a way that larval release would more likely occur during fortnightly neap periods at high tide. Such timing would minimize larval loss due to stranding and promote larval retention close to shore. This fully explains temporal patterns in populations facing the open sea and inhabiting eutrophic areas. However, rhythmic activity breaks down to an irregular pattern in a population within the São Sebastião Channel subjected to large variation of food supply around a mesotrophic average. Peaks of chl a concentration precede release events by 6 d, suggesting resource limitation for egg production within the channel. Also, extreme daily temperatures imposing mortality risk correlate to release rate just 1 d ahead, suggesting a terminal reproductive strategy. Oceanographic conditions apparently dictate whether barnacles follow a rhythmic trend of larval release supported by endogenous timing or, alternatively, respond to the stochastic variation of key environmental factors, resulting in an erratic temporal pattern.