30 resultados para Spinal fusion
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Autogenous bone grafts are considered to be the gold standard in bone regeneration because of their osteogenic activity; however, due to limited availability of intraoral donor sites and the need to resolve the demands of patients requires an alternative to these. Two male patients were submitted to implant surgery in two stages with 6 months intervals between each of them: the first was exodontia and placement of DBM graft into the socket; the second stage was the drill with a 2 mm internal diameter trephine in center of the alveolar ridge previously grafted with DBM and subsequent implant placement. The samples were analyzed under histological techniques. A very mature bone was observed at 6 months after DBM graft placement in the sockets, showing it to be a good alternative as bone graft.
Resumo:
BACKGROUND: There are several techniques for screw insertion in upper cervical spine surgery, and the use of the 3.5-mm screw is usually the standard. However, there is no consensus regarding the feasibility of using these screws in the pediatric population. OBJECTIVE: To determine the measurement of the lamina angle, lamina and pedicle length and thickness, and lateral mass length of the topographic axial view of the axis vertebra of 2- to 10-year-old children to guide the use of surgical screws. METHODS: Seventy-five computed tomography scans from 24- to 120-month-old patients were studied. Measurements were taken in an axial view of C2 and correlated with 2 age groups and both sexes. Statistical analysis was performed with the Student t test. RESULTS: In the 24- to 48-month age group, only 5.5% of the lamina and 8.3% of the pedicles had thicknesses < 3.5 mm. In the 49- to 120-month age group, there were no lamina thickness values < 3.5 mm, and 1.2% of pedicle thicknesses were < 3.5 mm. Both age groups had no lamina and pedicle lengths < 12 mm and no lateral mass lengths > 12 mm. CONCLUSION: In the majority of cases, the use of 3.5-mm lamina and pedicle screws in children is feasible. A base value of 45 degrees for the spinolaminar angle can be adopted as a reference for insertion of screws in the C2 lamina. This information can be particularly useful for decision making during preoperative planning for C1-C2 or craniocervical arthrodesis in children.
Resumo:
Objective: To carry out an anatomical study of the axis with the use of computed tomography (CT) in children aged from two to ten years, measuring the lamina angle, lamina and pedicle length and thickness, and lateral mass length. Methods: Sixty-four CTs were studied from patients aged 24 to 120 months old, of both sexes and without any cervical anomaly. The measurements obtained were correlated with the data on age and sex of the patients. Statistical analysis was performed using the Students "t" tests. Results: We found that within the age range 24-48 months, 5.5% of the lamina and 8.3% of the pedicles had thicknesses of less than 3.5mm, which is the minimum thickness needed for insertion of the screw. Between 49 and 120 months, there were no lamina thicknesses of less than 3.5mm, and 1.2% of the pedicle thicknesses were less than 3.5mm values. Neither of the age groups had any lamina and pedicle lengths of less than 12mm, or lateral mass lengths greater than 12mm. Conclusion: The analysis of the data obtained demonstrates that most of the time, is possible to use a 3.5mm pedicle screw in the laminas and pedicles of the axis in children. Level of Evidence: II, Development of diagnostic criteria in consecutive patients.
Resumo:
OBJETIVO: Estudo anatômico do áxis através de tomografia computadorizada (TC) em crianças de dois a dez anos de idade, mensurando a angulação das lâminas, espessura e comprimento de lâminas e pedículos e espessura da massa lateral. MÉTODOS: Estudou-se 64 TCs da coluna cervical de indivíduos com idades entre 24 e 120 meses, de ambos os sexos e sem deformidades cervicais. Correlacionaram-se as variáveis estudadas com os grupos etários e sexo dos pacientes. A análise estatística foi realizada por meio do teste t. RESULTADOS: Verificou-se que na faixa etária entre 24-48 meses, 5,5% das lâminas e 8,3% dos pedículos possuem espessura menores do que 3,5mm, espessura necessária para colocação de um parafuso. Entre 49-120 meses não há lâminas com espessuras menores do que 3,5mm e 1,2% dos pedículos possuem espessura menor do que 3,5mm. Em ambos os grupos etários não há comprimento de lâminas e pedículos menores do que 12 mm e massas laterais maiores do que 12 mm. CONCLUSÃO: A análise das dimensões obtidas no estudo permite, na maioria dos casos, a colocação de parafusos de 3,5mm nas lâminas e pedículos do áxis de crianças. Nível de Evidência II, Desenvolvimento de critérios diagnósticos em pacientes consecutivos.
Resumo:
OBJETIVO: Análise retrospectiva de prontuários de pacientes com instabilidade C1-C2 de causas traumáticas e não-traumáticas, submetidos à artrodese C1-C2. MÉTODOS: Foi realizada análise retrospectiva de prontuários de 20 pacientes do ambulatório de coluna do IOT-HCFMUSP com idades entre 7 e 83 anos (média de 43 anos), de ambos os sexos. Os parâmetros radiográficos para instabilidade foram baseados na medida do intervalo atlanto-axial superior a 3 mm em adultos e a 5 mm em crianças, utilizando-se medidas obtidas através de radiografia simples analisada no perfil. RESULTADOS: Foram operados 20 pacientes com instabilidade cervical alta, a maioria de origem traumática. A técnica cirúrgica mais utilizada foi a artrodese descrita por Magerl. Não foram observadas lesões vasculares. Foi registrada complicação infecciosa em dois pacientes. Obteve-se uma taxa de consolidação da artrodese de 85% e não foram necessárias cirurgias de revisão. CONCLUSÃO: Todas as técnicas utilizadas produziram a consolidação óssea satisfatória e foram excelentes para controlar a instabilidade atlanto-axial.
Resumo:
Skeletal tissues of 49 humpback whales Megaptera novaeangliae that stranded between 2002 and 2011 along the Abrolhos Bank seashore and its adjacent waters in Brazil were studied. Twelve (24.5%) animals presented pathological changes in one or more bones. Degenerative changes and developmental malformations were most frequent (10.2% each), followed by inflammatory/infectious and traumatic lesions (8.2% each). Infectious diseases led to severe lesions of the caudal vertebrae of 2 whales. In one of these individuals, the lesions involved 6 caudal vertebrae, leading to ankylosis of 3 vertebrae. Degenerative changes were observed in the vertebral columns of 3 animals, involving the joints of 13 ribs of 1 individual, and in the humerus of 1 whale. Traumatic lesions, such as osseous callus in the ribs, were observed in 4 animals. In 1 whale, the rib showed severe osteomyelitis, possibly resulting from the infection of multiple fractures. Developmental abnormalities such as spina bifida on 3 cervical vertebrae of 1 whale, fusion of spinal processes on thoracic vertebrae of 1 individual and fusion of the first 2 ribs unilaterally or bilaterally in 4 animals were found. Chronic infectious conditions found in the axial skeleton may have restrained spinal mobility and had detrimental effects on the general health of the animals, contributing to stranding and death. To our knowledge, this is the first systematic study on skeletal lesions in stranded humpback whales.
Resumo:
The acetic acid and phenyl-p-benzoquinone are easy and fast screening models to access the activity of novel candidates as analgesic drugs and their mechanisms. These models induce a characteristic and quantifiable overt pain-like behavior described as writhing response or abdominal contortions. The knowledge of the mechanisms involved in the chosen model is a crucial step forward demonstrating the mechanisms that the candidate drug would inhibit because the mechanisms triggered in that model will be addressed. Herein, it was investigated the role of spinal mitogen-activated protein (MAP) kinases ERK (extracellular signal-regulated kinase), JNK (Jun N-terminal Kinase) and p38, PI3K (phosphatidylinositol 3-kinase) and microglia in the writhing response induced by acetic acid and phenyl-p-benzoquinone, and flinch induced by formalin in mice. Acetic acid and phenyl-p-benzoquinone induced significant writhing response over 20 min. The nociceptive response in these models were significantly and in a dose-dependent manner reduced by intrathecal pre-treatment with ERK (PD98059), JNK (SB600125), p38 (SB202190) or PI3K (wortmannin) inhibitors. Furthermore, the co-treatment with MAP kinase and PI3K inhibitors, at doses that were ineffective as single treatment, significantly inhibited acetic acid- and phenyl-p-benzoquinone-induced nociception. The treatment with microglia inhibitors minocycline and fluorocitrate also diminished the nociceptive response. Similar results were obtained in the formalin test. Concluding. MAP kinases and PI3K are important spinal signaling kinases in acetic acid and phenyl-p-benzoquinone models of overt pain-like behavior and there is also activation of spinal microglia indicating that it is also important to determine whether drugs tested in these models also modulate such spinal mechanisms. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
OBJECTIVES: This prospective, randomized, experimental study with rats aimed to investigate the influence of general treatment strategies on the motor recovery of Wistar rats with moderate contusive spinal cord injury. METHODS: A total of 51 Wistar rats were randomized into five groups: control, maze, ramp, runway, and sham (laminectomy only). The rats underwent spinal cord injury at the T9-T10 levels using the NYU-Impactor. Each group was trained for 12 minutes twice a week for two weeks before and five weeks after the spinal cord injury, except for the control group. Functional motor recovery was assessed with the Basso, Beattie, and Bresnahan Scale on the first postoperative day and then once a week for five weeks. The animals were euthanized, and the spinal cords were collected for histological analysis. RESULTS: Ramp and maze groups showed an earlier and greater functional improvement effect than the control and runway groups. However, over time, unexpectedly, all of the groups showed similar effects as the control group, with spontaneous recovery. There were no histological differences in the injured area between the trained and control groups. CONCLUSION: Short-term benefits can be associated with a specific training regime; however, the same training was ineffective at maintaining superior long-term recovery. These results might support new considerations before hospital discharge of patients with spinal cord injuries.
Resumo:
Chagas' disease is a protozoosis caused by Trypanosoma cruzi that frequently shows severe chronic clinical complications of the heart or digestive system. Neurological disorders due to T. cruzi infection are also described in children and immunosuppressed hosts. We have previously reported that IL-12p40 knockout (KO) mice infected with the T. cruzi strain Sylvio X10/4 develop spinal cord neurodegenerative disease. Here, we further characterized neuropathology, parasite burden and inflammatory component associated to the fatal neurological disorder occurring in this mouse model. Forelimb paralysis in infected IL-12p40KO mice was associated with 60% (p<0.05) decrease in spinal cord neuronal density, glutamate accumulation (153%, p<0.05) and strong demyelization in lesion areas, mostly in those showing heavy protein nitrosylation, all denoting a neurotoxic degenerative profile. Quantification of T. cruzi 18S rRNA showed that parasite burden was controlled in the spinal cord of WT mice, decreasing from the fifth week after infection, but progressive parasite dissemination was observed in IL-12p40KO cords concurrent with significant accumulation of the astrocytic marker GFAP (317.0%, p<0.01) and 8-fold increase in macrophages/microglia (p<0.01), 36.3% (p<0.01) of which were infected. Similarly, mRNA levels for CD3, TNF-alpha, IFN-gamma, iNOS, IL-10 and arginase I declined in WT spinal cords about the fourth or fifth week after infection, but kept increasing in IL-12p40KO mice. Interestingly, compared to WT tissue, lower mRNA levels for IFN-gamma were observed in the IL-12p40KO spinal cords up to the fourth week of infection. Together the data suggest that impairments of parasite clearance mechanisms in IL-12p40KO mice elicit prolonged spinal cord inflammation that in turn leads to irreversible neurodegenerative lesions.
Resumo:
Turbulence is one of the key problems of classical physics, and it has been the object of intense research in the last decades in a large spectrum of problems involving fluids, plasmas, and waves. In order to review some advances in theoretical and experimental investigations on turbulence a mini-symposium on this subject was organized in the Dynamics Days South America 2010 Conference. The main goal of this mini-symposium was to present recent developments in both fundamental aspects and dynamical analysis of turbulence in nonlinear waves and fusion plasmas. In this paper we present a summary of the works presented at this mini-symposium. Among the questions to be addressed were the onset and control of turbulence and spatio-temporal chaos. (C) 2011 Elsevier B. V. All rights reserved.
Resumo:
Vascular pathology, including blood-brain/spinal cord barrier (BBB/BSCB) alterations, has recently been recognized as a key factor possibly aggravating motor neuron damage, identifying a neurovascular disease signature for ALS. However, BBB/BSCB competence in sporadic ALS (SALS) is still undetermined. In this study, BBB/BSCB integrity in postmortem gray and white matter of medulla and spinal cord tissue from SALS patients and controls was investigated. Major findings include (1) endothelial cell damage and pericyte degeneration, (2) severe intra- and extracellular edema, (3) reduced CD31 and CD105 expressions in endothelium, (4) significant accumulation of perivascular collagen IV, and fibrin deposits (5) significantly increased microvascular density in lumbar spinal cord, (6) IgG microvascular leakage, (7) reduced tight junction and adhesion protein expressions. Microvascular barrier abnormalities determined in gray and white matter of the medulla, cervical, and lumbar spinal cord of SALS patients are novel findings. Pervasive barrier damage discovered in ALS may have implications for disease pathogenesis and progression, as well as for uncovering novel therapeutic targets. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
The induction of autoimmune encephalomyelitis (EAE) in Lewis rats results in a period of exacerbation followed by complete recovery. Therefore, this model is widely used for studying the evolution of multiple sclerosis. In the present investigation, differentially expressed proteins in the spinal cord of Lewis rats during the evolution of EAE were assessed using the combination of 2DE and MALDI-TOF MS. The majority of the differentially expressed proteins were identified during the acute phase of EAE, in relation to naive control animals. On the other hand, recovered rats presented a similar protein expression pattern in comparison with the naive ones. This observation can be explained, at least in part, by the intense catabolism existent in acute phase due to nervous tissue damage. In recovered rats, we have described the upregulation of proteins that are apparently involved in the recovery of damaged tissue, such as light and medium neurofilaments, glial fibrillary acidic protein, tubulins subunits, and quaking protein. These proteins are involved mainly in cell growth, myelination, and remyelination as well as in astrocyte and oligodendrocyte maturation. The present study has demonstrated that the inflammatory response, characterized by an increase of the proliferative response and infiltration of autoreactive T lymphocytes in the central nervous system, occurs simultaneously with neurodegeneration.
Resumo:
OBJECTIVE: The standard therapy for patients with high-level spinal cord injury is long-term mechanical ventilation through a tracheostomy. However, in some cases, this approach results in death or disability. The aim of this study is to highlight the anesthetics and perioperative aspects of patients undergoing insertion of a diaphragmatic pacemaker. METHODS: Five patients with quadriplegia following high cervical traumatic spinal cord injury and ventilator-dependent chronic respiratory failure were implanted with a laparoscopic diaphragmatic pacemaker after preoperative assessments of their phrenic nerve function and diaphragm contractility through transcutaneous nerve stimulation. ClinicalTrials.gov:NCT01385384. RESULTS: The diaphragmatic pacemaker placement was successful in all of the patients. Two patients presented with capnothorax during the perioperative period, which resolved without consequences. After six months, three patients achieved continuous use of the diaphragm pacing system, and one patient could be removed from mechanical ventilation for more than 4 hours per day. CONCLUSIONS: The implantation of a diaphragmatic phrenic system is a new and safe technique with potential to improve the quality of life of patients who are dependent on mechanical ventilation because of spinal cord injuries. Appropriate indication and adequate perioperative care are fundamental to achieving better results.
Resumo:
Introduction: The aim of this study was to investigate the temporal modifications in bone mass, bone biomechanical properties and bone morphology in spinal cord injured rats 2, 4 and 6 weeks after a transection. Material and methods: Control animals were randomly distributed into four groups (n = 10 each group): control group (CG) - control animals sacrificed immediately after surgery; spinal cord-injured 2 weeks (2W) - spinal cord-injured animals sacrificed 2 weeks after surgery; spinal cord-injured 4 weeks (4W) - spinal cord-injured animals sacrificed 4 weeks after surgery; spinal cord-injured 6 weeks (6W) - spinal cord-injured animals sacrificed 6 weeks after surgery. Results: Biomechanical properties of the right tibia were determined by a threepoint bending test and injured animals showed a statistically significant decrease in maximal load compared to control animals. The right femur was used for densitometric analysis and bone mineral content of the animals sacrificed 4 and 6 weeks after surgery was significantly higher compared to the control animals and animals sacrificed 2 weeks after surgery. Histopathological and morphological analysis of tibiae revealed intense resorptive areas in the group 2 weeks after injury only. Conclusions: The results of this study show that this rat model is a valuable tool to investigate bone remodeling processes specifically associated with SCI. Taken together, our results suggest that spinal cord injury induced bone loss within 2 weeks after injury in rats.
Resumo:
We consider the influence of breakup channels on the complete fusion of weakly bound systems in terms of dynamic polarization potentials. It is argued that the enhancement of the cross section at sub-barrier energies may be consistent with recent experimental observations that nucleon transfer, often leading to breakup, is dominant compared to direct breakup. The main trends of the experimental complete fusion cross sections are analyzed in the framework of the DPP approach. The qualitative conclusions are supported by CDCC calculations including a sequential breakup channel, the one neutron stripping of Li-7 followed by the breakup of Li-6.