2 resultados para Spatially Explicit Simulations
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
While many developed countries have invested heavily in research on plant invasions over the last 50 years, the immense region of Latin America has made little progress. Recognising this, a group of scientists working on plant invasions in Latin America met in Chile in late 2010 to develop a research agenda for the region based on lessons learned elsewhere. Our three main findings are as follows. (1) Globalisation is inevitable, but the resultant plant introductions can be slowed or prevented by effective quarantine and early intervention. Development of spatially explicit inventories, research on the invasion process and weed risk assessments can help prioritise and streamline action. (2) Eradication has limited application for plants and control is expensive and requires strict prioritisation and careful planning and evaluation. (3) Accepting the concept of novel ecosystems, new combinations of native and introduced species that no longer depend on human intervention, may help optimise invasive species management. Our vision of novel ecosystem management is through actions that: (a) maintain as much native biodiversity and ecosystem functionality as possible, (b) minimise management intervention to invasives with known impact, and (c) maximise the area of intervention. We propose the creation of a Latin American Invasive Plants Network to help focus the new research agenda for member countries. The network would coordinate research and training and establish funding priorities, develop and strengthen tools to share knowledge, and raise awareness at the community, governmental and intergovernmental levels about the social, economic and environmental costs of plant invasions.
Resumo:
We developed a stochastic lattice model to describe the vector-borne disease (like yellow fever or dengue). The model is spatially structured and its dynamical rules take into account the diffusion of vectors. We consider a bipartite lattice, forming a sub-lattice of human and another occupied by mosquitoes. At each site of lattice we associate a stochastic variable that describes the occupation and the health state of a single individual (mosquito or human). The process of disease transmission in the human population follows a similar dynamic of the Susceptible-Infected-Recovered model (SIR), while the disease transmission in the mosquito population has an analogous dynamic of the Susceptible-Infected-Susceptible model (SIS) with mosquitos diffusion. The occurrence of an epidemic is directly related to the conditional probability of occurrence of infected mosquitoes (human) in the presence of susceptible human (mosquitoes) on neighborhood. The probability of diffusion of mosquitoes can facilitate the formation of pairs Susceptible-Infected enabling an increase in the size of the epidemic. Using an asynchronous dynamic update, we study the disease transmission in a population initially formed by susceptible individuals due to the introduction of a single mosquito (human) infected. We find that this model exhibits a continuous phase transition related to the existence or non-existence of an epidemic. By means of mean field approximations and Monte Carlo simulations we investigate the epidemic threshold and the phase diagram in terms of the diffusion probability and the infection probability.