21 resultados para Spatial analysis
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
This paper establishes the spawning habitat of the Brazilian sardine Sardinella brasiliensis and investigates the spatial variability of egg density and its relation with oceanographic conditions in the shelf of the south-east Brazil Bight (SBB). The spawning habitats of S. brasiliensis have been defined in terms of spatial models of egg density, temperature-salinity plots, quotient (Q) analysis and remote sensing data. Quotient curves (Q(C)) were constructed using the geographic distribution of egg density, temperature and salinity from samples collected during nine survey cruises between 1976 and 1993. The interannual sea surface temperature (SST) variability was determined using principal component analysis on the SST anomalies (SSTA) estimated from remote sensing data over the period between 1985 and 2007. The spatial pattern of egg occurrences in the SBB indicated that the largest concentration occurred between Paranagua and Sao Sebastiao. Spawning habitat expanded and contracted during the years, fluctuating around Paranagua. In January 1978 and January 1993, eggs were found nearly everywhere along the inner shelf of the SBB, while in January 1988 and 1991 spawning had contracted to their southernmost position. The SSTA maps for the spawning periods showed that in the case of habitat expansion (1993 only) anomalies over the SBB were zero or slightly negative, whereas for the contraction period anomalies were all positive. Sardinella brasiliensis is capable of exploring suitable spawning sites provided by the entrainment of the colder and less-saline South Atlantic Central Water onto the shelf by means of both coastal wind-driven (to the north-east of the SBB) and meander-induced (to the south-west of the SBB) upwelling.
Resumo:
Objective The Brazilian National Hansens Disease Control Program recently identified clusters with high disease transmission. Herein, we present different spatial analytical approaches to define highly vulnerable areas in one of these clusters. Method The study area included 373 municipalities in the four Brazilian states Maranha o, Para ', Tocantins and Piaui '. Spatial analysis was based on municipalities as the observation unit, considering the following disease indicators: (i) rate of new cases / 100 000 population, (ii) rate of cases < 15 years / 100 000 population, (iii) new cases with grade-2 disability / 100 000 population and (iv) proportion of new cases with grade-2 disabilities. We performed descriptive spatial analysis, local empirical Bayesian analysis and spatial scan statistic. Results A total of 254 (68.0%) municipalities were classified as hyperendemic (mean annual detection rates > 40 cases / 100 000 inhabitants). There was a concentration of municipalities with higher detection rates in Para ' and in the center of Maranha o. Spatial scan statistic identified 23 likely clusters of new leprosy case detection rates, most of them localized in these two states. These clusters included only 32% of the total population, but 55.4% of new leprosy cases. We also identified 16 significant clusters for the detection rate < 15 years and 11 likely clusters of new cases with grade-2. Several clusters of new cases with grade-2 / population overlap with those of new cases detection and detection of children < 15 years of age. The proportion of new cases with grade-2 did not reveal any significant clusters. Conclusions Several municipality clusters for high leprosy transmission and late diagnosis were identified in an endemic area using different statistical approaches. Spatial scan statistic is adequate to validate and confirm high-risk leprosy areas for transmission and late diagnosis, identified using descriptive spatial analysis and using local empirical Bayesian method. National and State leprosy control programs urgently need to intensify control actions in these highly vulnerable municipalities.
Resumo:
The purpose of this study was to present a spatial analysis of the social vulnerability of teenage pregnancy by geoprocessing data on births and deaths present on the Brazilian Ministry of Health databases in order to support intersectoral management actions and strategies based on spatial analysis in neighborhood areas. The thematic maps of the educational, occupational, birth and marital status of mothers, from all births and deaths in the city, presented a spatial correlation with teenage pregnancy. These maps were superimposed to produce social vulnerability map of adolescent pregnancy and women in general. This process presents itself as a powerful tool for the study of social vulnerability.
Resumo:
OBJECTIVE: To identify clusters of the major occurrences of leprosy and their associated socioeconomic and demographic factors. METHODS: Cases of leprosy that occurred between 1998 and 2007 in Sao Jose do Rio Preto (southeastern Brazil) were geocodified and the incidence rates were calculated by census tract. A socioeconomic classification score was obtained using principal component analysis of socioeconomic variables. Thematic maps to visualize the spatial distribution of the incidence of leprosy with respect to socioeconomic levels and demographic density were constructed using geostatistics. RESULTS: While the incidence rate for the entire city was 10.4 cases per 100,000 inhabitants annually between 1998 and 2007, the incidence rates of individual census tracts were heterogeneous, with values that ranged from 0 to 26.9 cases per 100,000 inhabitants per year. Areas with a high leprosy incidence were associated with lower socioeconomic levels. There were identified clusters of leprosy cases, however there was no association between disease incidence and demographic density. There was a disparity between the places where the majority of ill people lived and the location of healthcare services. CONCLUSIONS: The spatial analysis techniques utilized identified the poorer neighborhoods of the city as the areas with the highest risk for the disease. These data show that health departments must prioritize politico-administrative policies to minimize the effects of social inequality and improve the standards of living, hygiene, and education of the population in order to reduce the incidence of leprosy.
Resumo:
Investigating tree's spatial patterns according to their size classes and according to their more abundant species can provide evidences about the structure of the vegetal community, since the spatial pattern is a key question for forestry ecology studies. The tree spatial organization patterns on the environment depend on several ecological processes and on the specific characteristics of each environment, so that the best understanding of this frame provides important elements for the knowledge on forestry formation. This paper aimed to study tree spatial patterns, according to the diameter classes and from four most abundant species in different forests, in order to provide evidences regarding to the ecology of each vegetal community. The spatial pattern description in each forestry formation was developed using Ripley's K function. The studied forestry formations were: Ombrophilous Forest, Cerradao, Seasonal Forest and Restinga Forest. In this work, a 10.24 ha plot was installed in each forestry formation, and every tree, with a circumference at breast height (CBH) larger than 15 cm were measured, georeferenced and identified. The obtained data highlights the aggregated character in tropical forests, as observed in every studied forest. The 'Cerraddo' and 'Restinga' forest trees showed close aggregate patterns. In the Ombrophilous forest, for all distance scales, the aggregate pattern was meaningful. In the seasonal forest, a random tendency was observed, although a meaningful aggregation was observed in all short distances. The spatial pattern by diameter classes was generally aggregated for trees smaller than 10 cm of diameter and between 10 and 20 cm and random for the others, proving the existence of a tendency which in young trees is more aggregated than in old ones. The spatial pattern of the dominant species is always strongly similar to the general pattern of each forestry formation. The differences between the spatial patterns of two or three coincident species, among the forestry formations, indicate that its pattern is influenced by each different environment. This stands out the importance of its self-ecology and of its ecological processes, intrinsic of each community that can explain the observed patterns.
Resumo:
Introduction: The purpose of this ecological study was to evaluate the urban spatial and temporal distribution of tuberculosis (TB) in Ribeirao Preto, State of Sao Paulo, southeast Brazil, between 2006 and 2009 and to evaluate its relationship with factors of social vulnerability such as income and education level. Methods: We evaluated data from TBWeb, an electronic notification system for TB cases. Measures of social vulnerability were obtained from the SEADE Foundation, and information about the number of inhabitants, education and income of the households were obtained from Brazilian Institute of Geography and Statistics. Statistical analyses were conducted by a Bayesian regression model assuming a Poisson distribution for the observed new cases of TB in each area. A conditional autoregressive structure was used for the spatial covariance structure. Results: The Bayesian model confirmed the spatial heterogeneity of TB distribution in Ribeirao Preto, identifying areas with elevated risk and the effects of social vulnerability on the disease. We demonstrated that the rate of TB was correlated with the measures of income, education and social vulnerability. However, we observed areas with low vulnerability and high education and income, but with high estimated TB rates. Conclusions: The study identified areas with different risks for TB, given that the public health system deals with the characteristics of each region individually and prioritizes those that present a higher propensity to risk of TB. Complex relationships may exist between TB incidence and a wide range of environmental and intrinsic factors, which need to be studied in future research.
Resumo:
Spatial data warehouses (SDWs) allow for spatial analysis together with analytical multidimensional queries over huge volumes of data. The challenge is to retrieve data related to ad hoc spatial query windows according to spatial predicates, avoiding the high cost of joining large tables. Therefore, mechanisms to provide efficient query processing over SDWs are essential. In this paper, we propose two efficient indices for SDW: the SB-index and the HSB-index. The proposed indices share the following characteristics. They enable multidimensional queries with spatial predicate for SDW and also support predefined spatial hierarchies. Furthermore, they compute the spatial predicate and transform it into a conventional one, which can be evaluated together with other conventional predicates by accessing a star-join Bitmap index. While the SB-index has a sequential data structure, the HSB-index uses a hierarchical data structure to enable spatial objects clustering and a specialized buffer-pool to decrease the number of disk accesses. The advantages of the SB-index and the HSB-index over the DBMS resources for SDW indexing (i.e. star-join computation and materialized views) were investigated through performance tests, which issued roll-up operations extended with containment and intersection range queries. The performance results showed that improvements ranged from 68% up to 99% over both the star-join computation and the materialized view. Furthermore, the proposed indices proved to be very compact, adding only less than 1% to the storage requirements. Therefore, both the SB-index and the HSB-index are excellent choices for SDW indexing. Choosing between the SB-index and the HSB-index mainly depends on the query selectivity of spatial predicates. While low query selectivity benefits the HSB-index, the SB-index provides better performance for higher query selectivity.
Resumo:
A space-time analysis of American visceral leishmaniasis (AVL) in humans in the city of Bauru, Sao Paulo State, Brazil was carried out based on 239 cases diagnosed between June 2003 and October 2008. Spatial analysis of the disease showed that cases occurred especially in the city's urban areas. AVL annual incidence rates were calculated, demonstrating that the highest rate occurred in 2006 (19.55/100,000 inhabitants). This finding was confirmed by the time series analysis, which also showed a positive tendency over the period analyzed. The present study allows us to conclude that the disease was clustered in the Southwest side of the city in 2006, suggesting that this area may require special attention with regard to control and prevention measures.
Resumo:
A space-time analysis of American visceral leishmaniasis (AVL) in humans in the city of Bauru, São Paulo State, Brazil was carried out based on 239 cases diagnosed between June 2003 and October 2008. Spatial analysis of the disease showed that cases occurred especially in the city's urban areas. AVL annual incidence rates were calculated, demonstrating that the highest rate occurred in 2006 (19.55/100,000 inhabitants). This finding was confirmed by the time series analysis, which also showed a positive tendency over the period analyzed. The present study allows us to conclude that the disease was clustered in the Southwest side of the city in 2006, suggesting that this area may require special attention with regard to control and prevention measures.
Resumo:
This study aimed to verify the impact of inhalable particulate matter (PM10) on cancer incidence and mortality in the city of Sao Paulo, Brazil. Statistical techniques were used to investigate the relationship between PM10 on cancer incidence and mortality in selected districts. For some types of cancer (skin, lung, thyroid, larynx, and bladder) and some periods, the correlation coefficients ranged from 0.60 to 0.80 for incidence. Lung cancer mortality showed more correlations during the overall period. Spatial analysis showed that districts distant from the city center showed higher than expected relative risk, depending on the type of cancer According to the study, urban PM10 can contribute to increased incidence of some cancers and may also contribute to increased cancer mortality. The results highlight the need to adopt measures to reduce atmospheric PM10 levels and the importance of their continuous monitoring.
Resumo:
Foi realizada uma análise espacial da ocorrência de leptospirose humana e canina na Supervisão de Vigilância em Saúde do Butantã, situada no município de São Paulo, no ano de 2007, associada a variáveis ambientais de risco, tais como: focos de enchente e áreas de desratização. Foram encontrados aglomerados espaciais de pontos de alagamentos em 12 setores censitários e de casos de leptospirose humana em quatro setores censitários, sem correlação entre ambos. Não foram encontrados agrupamentos de casos em cães, possivelmente devido à subnotificação. As proporções casos humanos de leptospirose : população humana dentro e fora da área de desratização foram 7:199.600 e 9:257.980, respectivamente. Conclui-se que medidas de controle de roedores como a desratização foram responsáveis pela minimização dos efeitos dos fatores de risco para a transmissão de leptospirose para humanos.
Resumo:
This study aimed to verify the impact of inhalable particulate matter (PM10) on cancer incidence and mortality in the city of São Paulo, Brazil. Statistical techniques were used to investigate the relationship between PM10 on cancer incidence and mortality in selected districts. For some types of cancer (skin, lung, thyroid, larynx, and bladder) and some periods, the correlation coefficients ranged from 0.60 to 0.80 for incidence. Lung cancer mortality showed more correlations during the overall period. Spatial analysis showed that districts distant from the city center showed higher than expected relative risk, depending on the type of cancer. According to the study, urban PM10 can contribute to increased incidence of some cancers and may also contribute to increased cancer mortality. The results highlight the need to adopt measures to reduce atmospheric PM10 levels and the importance of their continuous monitoring.
Resumo:
OBJETIVO: Identificar aglomerados espaciais de microrregiões segundo taxas de óbito por acidentes de trânsito, no Estado de São Paulo, 1 ano antes e 1 ano após a Lei Seca. MÉTODOS: Estudo ecológico e exploratório, no período de 2007 e 2009, em 63 microrregiões do Estado de SP, Brasil. Utilizaram-se ferramentas de geoprocessamento com dados do DATASUS; analisando óbitos decorrentes de acidentes de trânsito em taxas por 100 mil habitantes, construindo coropletes. Nova estatística foi obtida subtraindo-se a taxa de 2009 de 2007, observando regiões de melhora ou piora. RESULTADOS: Em 2007, ocorreram 5.204 óbitos, com média de 83 óbitos/microrregião, variando entre 1 e 1.440. Já 2009 obteve 5.065 óbitos com a média de 80 óbitos/microrregião, variando entre 1 e 1.453. O coeficiente de Moran em 2007 foi I = 0,09 (p = 0,04) com correlação espacial positiva e 2009 obteve I = 0,04 (p = 0,16), sem correlação. A diferença entre as taxas obteve I = 0,23 (p = 0, 007), indicando associação espacial. Em 2007, Presidente Prudente, Rio Claro, Campinas, Bragança Paulista, Osasco e São Paulo tiveram altas taxas de óbito. Dessas regiões citadas, somente Osasco não se destacou em 2009. Ribeirão Preto, Ourinhos e Avaré obtiveram piora em 2009. A diferença entre as taxas de 2009 e 2007 mostrou que Amparo, Bragança Paulista e Campinas tiveram melhora, e Presidente Prudente e Ourinhos apresentaram piora. CONCLUSÃO: Foi possível identificar os locais com as maiores taxas de mortalidade, apontando locais onde as ações de fiscalização devem ser revisadas.
Resumo:
Background: In a classical study, Durkheim noted a direct relation between suicide rates and wealth in the XIX century France. Since that time, several studies have verified this relationship. It is known that suicide rates are associated with income, although the direction of this association varies worldwide. Brazil presents a heterogeneous distribution of income and suicide across its territory; however, evaluation for an association between these variables has shown mixed results. We aimed to evaluate the relationship between suicide rates and income in Brazil, State of Sao Paulo (SP), and City of SP, considering geographical area and temporal trends. Methods: Data were extracted from the National and State official statistics departments. Three socioeconomic areas were considered according to income, from the wealthiest (area 1) to the poorest (area 3). We also considered three regions: country-wide (27 Brazilian States and 558 Brazilian micro-regions), state-wide (645 counties of SP State), and city-wide (96 districts of SP city). Relative risks (RR) were calculated among areas 1, 2, and 3 for all regions, in a cross-sectional approach. Then, we used Joinpoint analysis to explore the temporal trends of suicide rates and SaTScan to investigate geographical clusters of high/low suicide rates across the territory. Results: Suicide rates in Brazil, the State of SP, and the city of SP were 6.2, 6.6, and 5.4 per 100,000, respectively. Taking suicide rates of the poorest area (3) as reference, the RR for the wealthiest area was 1.64, 0.88, and 1.65 for Brazil, State of SP, and city of SP, respectively (p for trend <0.05 for all analyses). Spatial cluster of high suicide rates were identified at Brazilian southern (RR = 2.37), state of SP western (RR = 1.32), and city of SP central (RR = 1.65) regions. A direct association between income and suicide were found for Brazil (OR = 2.59) and the city of SP (OR = 1.07), and an inverse association for the state of SP (OR = 0.49). Conclusions: Temporospatial analyses revealed higher suicide rates in wealthier areas in Brazil and the city of SP and in poorer areas in the State of SP. We further discuss the role of socioeconomic characteristics for explaining these discrepancies and the importance of our findings in public health policies. Similar studies in other Brazilian States and developing countries are warranted.
Resumo:
Background: Infant mortality is an important measure of human development, related to the level of welfare of a society. In order to inform public policy, various studies have tried to identify the factors that influence, at an aggregated level, infant mortality. The objective of this paper is to analyze the regional pattern of infant mortality in Brazil, evaluating the effect of infrastructure, socio-economic, and demographic variables to understand its distribution across the country. Methods: Regressions including socio-economic and living conditions variables are conducted in a structure of panel data. More specifically, a spatial panel data model with fixed effects and a spatial error autocorrelation structure is used to help to solve spatial dependence problems. The use of a spatial modeling approach takes into account the potential presence of spillovers between neighboring spatial units. The spatial units considered are Minimum Comparable Areas, defined to provide a consistent definition across Census years. Data are drawn from the 1980, 1991 and 2000 Census of Brazil, and from data collected by the Ministry of Health (DATASUS). In order to identify the influence of health care infrastructure, variables related to the number of public and private hospitals are included. Results: The results indicate that the panel model with spatial effects provides the best fit to the data. The analysis confirms that the provision of health care infrastructure and social policy measures (e. g. improving education attainment) are linked to reduced rates of infant mortality. An original finding concerns the role of spatial effects in the analysis of IMR. Spillover effects associated with health infrastructure and water and sanitation facilities imply that there are regional benefits beyond the unit of analysis. Conclusions: A spatial modeling approach is important to produce reliable estimates in the analysis of panel IMR data. Substantively, this paper contributes to our understanding of the physical and social factors that influence IMR in the case of a developing country.