22 resultados para Spatial Variability
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Temporal, spatial and diel variation in the distribution and abundance of organisms is an inherent property of ecological systems. The present study describes these variations and the composition of decapod larvae from the surface waters of St Paul`s Rocks. The expeditions to the archipelago were carried out in April, August and November 2003, March 2004 and May 2005. Surface plankton samples were collected during the morning and dusk periods, inside the inlet and in increasing distances around the archipelago (similar to 150, 700 and 1500 m). The identification resulted in 51 taxa. Seven species, six genera and larvae of the families Pandalidae and Portunidae were identified for the first time in the area. The mean larval density varied from zero to 150.2 +/- 69.6 individuals 100 m(-3) in the waters surrounding the archipelago and from 1.7 +/- 3.0 to 12,827 +/- 15,073 individuals 100 m(-3) inside the inlet. Significant differences on larval density were verified between months and period of the day, but not among the three sites around the archipelago. Cluster and non-metric multidimensional scaling analysis indicated that the decapod larvae community was divided into benthic and pelagic assemblages. Indicator species analysis (ISA) showed that six Brachyura taxa were good indicators for the inlet, while three sergestids were the main species from the waters around the archipelago. These results suggest that St Paul`s Rocks can be divided into two habitats, based on larval composition, density and diversity values: the inlet and the waters surrounding the archipelago.
Resumo:
Information about rainfall erosivity is important during soil and water conservation planning. Thus, the spatial variability of rainfall erosivity of the state Mato Grosso do Sul was analyzed using ordinary kriging interpolation. For this, three pluviograph stations were used to obtain the regression equations between the erosivity index and the rainfall coefficient EI30. The equations obtained were applied to 109 pluviometric stations, resulting in EI30 values. These values were analyzed from geostatistical technique, which can be divided into: descriptive statistics, adjust to semivariogram, cross-validation process and implementation of ordinary kriging to generate the erosivity map. Highest erosivity values were found in central and northeast regions of the State, while the lowest values were observed in the southern region. In addition, high annual precipitation values not necessarily produce higher erosivity values.
Resumo:
This study aimed to evaluate the spatial variability of leaf content of macro and micronutrients. The citrus plants orchard with 5 years of age, planted at regular intervals of 8 x 7 m, was managed under drip irrigation. Leaf samples were collected from each plant to be analyzed in the laboratory. Data were analyzed using the software R, version 2.5.1 Copyright (C) 2007, along with geostatistics package GeoR. All contents of macro and micronutrients studied were adjusted to normal distribution and showed spatial dependence.The best-fit models, based on the likelihood, for the macro and micronutrients were the spherical and matern. It is suggest for the macronutrients nitrogen, phosphorus, potassium, calcium, magnesium and sulfur the minimum distances between samples of 37; 58; 29; 63; 46 and 15 m respectively, while for the micronutrients boron, copper, iron, manganese and zinc, the distances suggests are 29; 9; 113; 35 and 14 m, respectively.
Resumo:
The correlation of soil fertility x seed physiological potential is very important in the area of seed technology but results published with that theme are contradictory. For this reason, this study to evaluate the correlations between soil chemical properties and physiological potential of soybean seeds. On georeferenced points, both soil and seeds were sampled for analysis of soil fertility and seed physiological potential. Data were assessed by the following analyses: descriptive statistics; Pearson's linear correlation; and geostatistics. The adjusted parameters of the semivariograms were used to produce maps of spatial distribution for each variable. Organic matter content, Mn and Cu showed significant effects on seed germination. Most variables studied presented moderate to high spatial dependence. Germination and accelerated aging of seeds, and P, Ca, Mg, Mn, Cu and Zn showed a better fit to spherical semivariogram: organic matter, pH and K had a better fit to Gaussian model; and V% and Fe showed a better fit to the linear model. The values for range of spatial dependence varied from 89.9 m for P until 651.4 m for Fe. These values should be considered when new samples are collected for assessing soil fertility in this production area.
Resumo:
This paper establishes the spawning habitat of the Brazilian sardine Sardinella brasiliensis and investigates the spatial variability of egg density and its relation with oceanographic conditions in the shelf of the south-east Brazil Bight (SBB). The spawning habitats of S. brasiliensis have been defined in terms of spatial models of egg density, temperature-salinity plots, quotient (Q) analysis and remote sensing data. Quotient curves (Q(C)) were constructed using the geographic distribution of egg density, temperature and salinity from samples collected during nine survey cruises between 1976 and 1993. The interannual sea surface temperature (SST) variability was determined using principal component analysis on the SST anomalies (SSTA) estimated from remote sensing data over the period between 1985 and 2007. The spatial pattern of egg occurrences in the SBB indicated that the largest concentration occurred between Paranagua and Sao Sebastiao. Spawning habitat expanded and contracted during the years, fluctuating around Paranagua. In January 1978 and January 1993, eggs were found nearly everywhere along the inner shelf of the SBB, while in January 1988 and 1991 spawning had contracted to their southernmost position. The SSTA maps for the spawning periods showed that in the case of habitat expansion (1993 only) anomalies over the SBB were zero or slightly negative, whereas for the contraction period anomalies were all positive. Sardinella brasiliensis is capable of exploring suitable spawning sites provided by the entrainment of the colder and less-saline South Atlantic Central Water onto the shelf by means of both coastal wind-driven (to the north-east of the SBB) and meander-induced (to the south-west of the SBB) upwelling.
Resumo:
We provide a detailed account of the spatial structure of the Brazilian sardine (Sardinella brasiliensis) spawning and nursery habitats, using ichthyoplankton data from nine surveys (1976-1993) covering the Southeastern Brazilian Bight (SBB). The spatial variability of sardine eggs and larvae was partitioned into predefined spatial-scale classes (broad scale, 200-500 km; medium scale, 50-100 km; and local scale, <50 km). The relationship between density distributions at both developmental stages and environmental descriptors (temperature and salinity) was also explored within these spatial scales. Spatial distributions of sardine eggs were mostly structured on medium and local scales, while larvae were characterized by broad-and medium-scale distributions. Broad-and medium-scale surface temperatures were positively correlated with sardine densities, for both developmental stages. Correlations with salinity were predominantly negative and concentrated on a medium scale. Broad-scale structuring might be explained by mesoscale processes, such as pulsing upwelling events and Brazil Current meandering at the northern portion of the SBB, while medium-scale relationships may be associated with local estuarine outflows. The results indicate that processes favouring vertical stability might regulate the spatial extensions of suitable spawning and nursery habitats for the Brazilian sardine.
Resumo:
Contamination by butyltin compounds (BTs) has been reported in estuarine environments worldwide, with serious impacts on the biota of these areas. Considering that BTs can be degraded by varying environmental conditions such as incident light and salinity, the short-term variations in such factors may lead to inaccurate estimates of BTs concentrations in nature. Therefore, the present study aimed to evaluate the possibility that measurements of BTs in estuarine sediments are influenced by different sampling conditions, including period of the day (day or night), tidal zone (intertidal or subtidal), and tides (high or low). The study area is located on the Brazilian southeastern coast, Sao Vicente Estuary, at Pescadores Beach, where BT contamination was previously detected. Three replicate samples of surface sediment were collected randomly in each combination of period of the day, tidal zone, and tide condition, from three subareas along the beach, totaling 72 samples. BTs were analyzed by GC-PFPD using a tin filter and a VF-5 column, by means of a validated method. The concentrations of tributyltin (TBT), dibutyltin (DBT), and monobutyltin (MBT) ranged from undetectable to 161 ng Sn g(-1) (d.w.). In most samples (71%), only MBT was quantifiable, whereas TBTs were measured in only 14, suggesting either an old contamination or rapid degradation processes. DBT was found in 27 samples, but could be quantified in only one. MBT concentrations did not differ significantly with time of day, zones, or tide conditions. DBT and TBT could not be compared under all these environmental conditions, because only a few samples were above the quantification limit. Pooled samples of TBT did not reveal any difference between day and night. These results indicated that, in assessing contamination by butyltin compounds, surface-sediment samples can be collected in any environmental conditions. However, the wide variation of BTs concentrations in the study area, i.e., over a very small geographic scale, illustrates the need for representative hierarchical and composite sampling designs that are compatible with the multiscalar temporal and spatial variability common to most marine systems. The use of such sampling designs will be necessary for future attempts to quantitatively evaluate and monitor the occurrence and impact of these compounds in nature
Resumo:
Oil spills are potential threats to the integrity of highly productive coastal wetlands, such as mangrove forests. In October 1983, a mangrove area of nearly 300 ha located on the southeastern coast of Brazil was impacted by a 3.5 million liter crude oil spill released by a broken pipeline. In order to assess the long-term effects of oil pollution on mangrove vegetation, we carried out a GIS-based multitemporal analysis of aerial photographs of the years 1962, 1994, 2000 and 2003. Photointerpretation, visual classification, class quantification, ground-truth and vegetation structure data were combined to evaluate the oil impact. Before the spill, the mangroves exhibited a homogeneous canopy and well-developed stands. More than ten years after the spill, the mangrove vegetation exhibited three distinct zones reflecting the long-term effects of the oil pollution. The most impacted zone (10.5 ha) presented dead trees, exposed substrate and recovering stands with reduced structural development. We suggest that the distinct impact and recovery zones reflect the spatial variability of oil removal rates in the mangrove forest. This study identifies the multitemporal analysis of aerial photographs as a useful tool for assessing a system's capacity for recovery and monitoring the long-term residual effects of pollutants on vegetation dynamics, thus giving support to mangrove forest management and conservation.
Resumo:
Scaling methods allow a single solution to Richards' equation (RE) to suffice for numerous specific cases of water flow in unsaturated soils. During the past half-century, many such methods were developed for similar soils. In this paper, a new method is proposed for scaling RE for a wide range of dissimilar soils. Exponential-power (EP) functions are used to reduce the dependence of the scaled RE on the soil hydraulic properties. To evaluate the proposed method, the scaled RE was solved numerically considering two test cases: infiltration into relatively dry soils having initially uniform water content distributions, and gravity-dominant drainage occurring from initially wet soil profiles. Although the results for four texturally different soils ranging from sand to heavy clay (adopted from the UNSODA database) showed that the scaled solution were invariant for a wide range of flow conditions, slight deviations were observed when the soil profile was initially wet in the infiltration case or deeply wet in the drainage case. The invariance of the scaled RE makes it possible to generalize a single solution of RE to many dissimilar soils and conditions. Such a procedure reduces the numerical calculations and provides additional opportunities for solving the highly nonlinear RE for unsaturated water flow in soils.
Resumo:
Yield mapping represents the spatial variability concerning the features of a productive area and allows intervening on the next year production, for example, on a site-specific input application. The trial aimed at verifying the influence of a sampling density and the type of interpolator on yield mapping precision to be produced by a manual sampling of grains. This solution is usually adopted when a combine with yield monitor can not be used. An yield map was developed using data obtained from a combine equipped with yield monitor during corn harvesting. From this map, 84 sample grids were established and through three interpolators: inverse of square distance, inverse of distance and ordinary kriging, 252 yield maps were created. Then they were compared with the original one using the coefficient of relative deviation (CRD) and the kappa index. The loss regarding yield mapping information increased as the sampling density decreased. Besides, it was also dependent on the interpolation method used. A multiple regression model was adjusted to the variable CRD, according to the following variables: spatial variability index and sampling density. This model aimed at aiding the farmer to define the sampling density, thus, allowing to obtain the manual yield mapping, during eventual problems in the yield monitor.
Disproportionate single-species contribution to canopy-soil nutrient flux in an Amazonian rainforest
Resumo:
Rainfall, throughfall and stemflow were monitored on an event basis in an undisturbed open tropical rainforest with a large number of palm trees located in the southwestern Amazon basin of Brazil. Stemflow samples were collected from 24 trees with a diameter at breast height (DBH) > 5 cm, as well as eight young and four full-grown babassu palms (Attalea speciosa Mart.) for 5 weeks during the peak of the wet season. We calculated rainfall, throughfall and stemflow concentrations and fluxes of Na+, K+, Ca2+, Mg2+,, Cl-, SO42-, NO3- and H+ and stemflow volume-weighted mean concentrations and fluxes for three size classes of broadleaf trees and three size classes of palms. The concentrations of most solutes were higher in stemflow than in rainfall and increased with increasing tree and palm size. Concentration enrichments from rainfall to stemflow and throughfall were particularly high (81-fold) for NO3-. Stemflow fluxes of NO3- and H+ exceeded throughfall fluxes but stemflow fluxes of other solutes were less than throughfall fluxes. Stemflow solute fluxes to the forest soil were dominated by fluxes on babassu palms, which represented only 4% of total stem number and 10% of total basal area. For NO3-, stemflow contributed 51% of the total mass of nitrogen delivered to the forest floor (stemflow + throughfall) and represented more than a 2000-fold increase in NO3- flux compared what would have been delivered by rainfall alone on the equivalent area. Because these highly localized fluxes of both water and NO3- persist in time and space, they have the potential to affect patterns of soil moisture, microbial populations and other features of soil biogeochemistry conducive to the creation of hotspots for nitrogen leaching and denitrification, which could amount to an important fraction of total ecosystem fluxes. Because these hotspots occur over very small areas, they have likely gone undetected in previous studies and need to be considered as an important feature of the biogeochemistry of palm-rich tropical forest. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
A armazenagem de água no solo é muito variável no tempo e no espaço devido à influência de vários fatores ambientais e topográficos. Objetivou-se neste estudo: quantificar a armazenagem de água no solo; avaliar sua estabilidade temporal e sua variabilidade espacial em um local próximo e outro distante do sistema radicular numa sucessão feijão/aveia-preta; e constatar sua variabilidade espacial em função do relevo. Em área experimental de 1.500 m², situada em Piracicaba-SP (latitude de 22° 42' 30" S, longitude de 47° 38' 00" W e 546 m de altitude), estabeleceram-se 60 pontos de amostragem, distanciados entre si de 5 m, numa grade de 10 por 6 pontos (50 x 30 m). Os valores da armazenagem de água no solo apresentaram comportamento-padrão para o solo estudado, com valores maiores em profundidade do que na camada mais superficial. Houve maior estabilidade temporal da armazenagem de água no solo durante o período chuvoso, porém na fase de secagem do solo a estabilidade temporal também foi constatada, mas com valores de coeficiente de correlação mais elevados na camada de 0,0-0,80 m, mostrando que essa estabilidade foi claramente devida à posição topográfica desses pontos, os quais estão localizados na porção mais baixa do relevo. Assim, o ponto 52 foi escolhido como representativo da média na fase de recarga de água no solo em ambas as camadas estudadas, e o ponto 46, na camada superior durante a fase de secagem do solo. A dependência espacial da variabilidade da armazenagem de água no solo foi detectada em ambas as camadas de solo, porém com maior alcance na camada de 0,0-0,40 m, quando houve ocorrência de precipitação. Quando as chuvas cessaram, o alcance foi maior na camada de 0,0-0,80 m. Durante o período chuvoso, o padrão de variabilidade espacial foi muito semelhante em ambas as camadas de solo, com armazenagens maiores na faixa de maior inclinação e depressões do terreno.
Resumo:
The current high competition on Citrus industry demands from growers new management technologies for superior efficiency and sustainability. In this context, precision agriculture (PA) has developed techniques based on yield mapping and management systems that recognize field spatial variability, which contribute to increase profitability of commercial crops. Because spatial variability is often not perceived the orange orchards are still managed as uniform and adoption of PA technology on citrus farms is low. Thus, the objective of the present study was to characterize the spatial variability of three factors: fruit yield, soil fertility and occurrence of plant gaps caused by either citrus blight or huanglongbing (HLB) in a commercial Valencia orchard in Brotas, São Paulo State, Brazil. Data from volume, geographic coordinates and representative area of the bags used on harvest were recorded to generate yield points that were then interpolated to produce the yield map. Soil chemical characteristics were studied by analyzing samples collected along planting rows and inter-rows in 24 points distributed in the field. A map of density of tree gaps was produced by georeferencing individual gaps and later by counting the number of gaps within 500 m² cells. Data were submitted to statistical and geostatistical analyses. A t test was used to compare means of soil chemical characteristics between sampling regions. High variation on yield and density of tree gaps was observed from the maps. It was also demonstrated overlapping regions of high density of plant absence and low fruit yield. Soil fertility varied depending on the sampling region in the orchard. The spatial variability found on yield, soil fertility and on disease occurrence demonstrated the importance to adopt site specific nutrient management and disease control as tools to guarantee efficiency of fruit production.
Resumo:
Oil spills are potential threats to the integrity of highly productive coastal wetlands, such as mangrove forests. In October 1983, a mangrove area of nearly 300 ha located on the southeastern coast of Brazil was impacted by a 3.5 million liter crude oil spill released by a broken pipeline. In order to assess the long-term effects of oil pollution on mangrove vegetation, we carried out a GIS-based multitemporal analysis of aerial photographs of the years 1962, 1994, 2000 and 2003. Photointerpretation, visual classification, class quantification, ground-truth and vegetation structure data were combined to evaluate the oil impact. Before the spill, the mangroves exhibited a homogeneous canopy and well-developed stands. More than ten years after the spill, the mangrove vegetation exhibited three distinct zones reflecting the long-term effects of the oil pollution. The most impacted zone (10.5 ha) presented dead trees, exposed substrate and recovering stands with reduced structural development. We suggest that the distinct impact and recovery zones reflect the spatial variability of oil removal rates in the mangrove forest. This study identifies the multitemporal analysis of aerial photographs as a useful tool for assessing a system's capacity for recovery and monitoring the long-term residual effects of pollutants on vegetation dynamics, thus giving support to mangrove forest management and conservation.
Resumo:
Os dados de sensoriamento remoto em campo podem fornecer informações detalhadas sobre a variabilidade de parâmetros biofísicos ligados à produtividade em grandes áreas e apresentam potencial para o monitoramento destes parâmetros, ao longo de todo o ciclo de desenvolvimento da cultura. Este trabalho objetivou mapear a variabilidade espacial do índice de vegetação da diferença normalizada (NDVI) e seus componentes, em duas lavouras comerciais de algodão (Gossipium hirsutum L.), utilizando sensor óptico ativo, em nível terrestre. Os dados foram coletados utilizando-se sensor instalado em um pulverizador autopropelido agrícola. Um receptor GPS foi acoplado ao sensor, para a obtenção das coordenadas dos pontos de amostragem. As leituras foram realizadas em faixas espaçadas em 21,0 m, aproveitando-se as passadas do veículo no momento da pulverização de agroquímicos, e os dados submetidos à análise estatística clássica e geoestatística. Mapas de distribuição espacial das variáveis foram elaborados pela interpolação por krigagem. Observou-se maior variabilidade espacial do NDVI e da reflectância espectral da vegetação na região do infravermelho próximo (IVP) (880 nm) e do visível (590 nm) na lavoura com maior estresse fisiológico, devido ao ataque do percevejo castanho [Scaptocoris castanea (Hem.: Cydnidae)], em relação à lavoura sadia.