11 resultados para Spatial Prediction Maps
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Robust analysis of vector fields has been established as an important tool for deriving insights from the complex systems these fields model. Traditional analysis and visualization techniques rely primarily on computing streamlines through numerical integration. The inherent numerical errors of such approaches are usually ignored, leading to inconsistencies that cause unreliable visualizations and can ultimately prevent in-depth analysis. We propose a new representation for vector fields on surfaces that replaces numerical integration through triangles with maps from the triangle boundaries to themselves. This representation, called edge maps, permits a concise description of flow behaviors and is equivalent to computing all possible streamlines at a user defined error threshold. Independent of this error streamlines computed using edge maps are guaranteed to be consistent up to floating point precision, enabling the stable extraction of features such as the topological skeleton. Furthermore, our representation explicitly stores spatial and temporal errors which we use to produce more informative visualizations. This work describes the construction of edge maps, the error quantification, and a refinement procedure to adhere to a user defined error bound. Finally, we introduce new visualizations using the additional information provided by edge maps to indicate the uncertainty involved in computing streamlines and topological structures.
Resumo:
This paper establishes the spawning habitat of the Brazilian sardine Sardinella brasiliensis and investigates the spatial variability of egg density and its relation with oceanographic conditions in the shelf of the south-east Brazil Bight (SBB). The spawning habitats of S. brasiliensis have been defined in terms of spatial models of egg density, temperature-salinity plots, quotient (Q) analysis and remote sensing data. Quotient curves (Q(C)) were constructed using the geographic distribution of egg density, temperature and salinity from samples collected during nine survey cruises between 1976 and 1993. The interannual sea surface temperature (SST) variability was determined using principal component analysis on the SST anomalies (SSTA) estimated from remote sensing data over the period between 1985 and 2007. The spatial pattern of egg occurrences in the SBB indicated that the largest concentration occurred between Paranagua and Sao Sebastiao. Spawning habitat expanded and contracted during the years, fluctuating around Paranagua. In January 1978 and January 1993, eggs were found nearly everywhere along the inner shelf of the SBB, while in January 1988 and 1991 spawning had contracted to their southernmost position. The SSTA maps for the spawning periods showed that in the case of habitat expansion (1993 only) anomalies over the SBB were zero or slightly negative, whereas for the contraction period anomalies were all positive. Sardinella brasiliensis is capable of exploring suitable spawning sites provided by the entrainment of the colder and less-saline South Atlantic Central Water onto the shelf by means of both coastal wind-driven (to the north-east of the SBB) and meander-induced (to the south-west of the SBB) upwelling.
Spatial reference of black capuchin monkeys in Brazilian Atlantic Forest: egocentric or allocentric?
Resumo:
Wild primates occupy large home ranges and travel long distances to reach goals. However, how primates are able to remember goal locations and travel efficiently is unclear. Few studies present consistent results regarding what reference system primates use to navigate, and what kind of spatial information they recognize. We analysed the pattern of navigation of one wild group of black capuchin monkeys, Cebus nigritus, at Atlantic Forest for 100 days in Carlos Botelho State Park (PECB), Brazil. We tested predictions based on the alternative hypotheses that black capuchin monkeys navigate using a sequence of landmarks as an egocentric reference system or an allocentric reference system, or both, depending on availability of food resources. The group location was recorded using a GPS device collecting coordinates at 5 min intervals, and route maps were generated using ArcView v9.3.1. The study group travelled through habitual routes during less than 30% of our study sample, and revisited resources from different starting points, using different paths and routes, even when prominent landmarks near feeding locations were not visible. The study group used habitual routes more frequently when high-quality foods were scarce, and navigated using different paths when revisiting food sources. Results support the hypothesis that black capuchin monkeys at PECB navigate using both egocentric and allocentric systems of reference, depending on the quality and distribution of the food resource they find. (C) 2010 The Association for the Study of Animal Behaviour. Published by Elsevier Ltd. All rights reserved.
Resumo:
The Asteraceae, one of the largest families among angiosperms, is chemically characterised by the production of sesquiterpene lactones (SLs). A total of 1,111 SLs, which were extracted from 658 species, 161 genera, 63 subtribes and 15 tribes of Asteraceae, were represented and registered in two dimensions in the SISTEMATX, an in-house software system, and were associated with their botanical sources. The respective 11 block of descriptors: Constitutional, Functional groups, BCUT, Atom-centred, 2D autocorrelations, Topological, Geometrical, RDF, 3D-MoRSE, GETAWAY and WHIM were used as input data to separate the botanical occurrences through self-organising maps. Maps that were generated with each descriptor divided the Asteraceae tribes, with total index values between 66.7% and 83.6%. The analysis of the results shows evident similarities among the Heliantheae, Helenieae and Eupatorieae tribes as well as between the Anthemideae and Inuleae tribes. Those observations are in agreement with systematic classifications that were proposed by Bremer, which use mainly morphological and molecular data, therefore chemical markers partially corroborate with these classifications. The results demonstrate that the atom-centred and RDF descriptors can be used as a tool for taxonomic classification in low hierarchical levels, such as tribes. Descriptors obtained through fragments or by the two-dimensional representation of the SL structures were sufficient to obtain significant results, and better results were not achieved by using descriptors derived from three-dimensional representations of SLs. Such models based on physico-chemical properties can project new design SLs, similar structures from literature or even unreported structures in two-dimensional chemical space. Therefore, the generated SOMs can predict the most probable tribe where a biologically active molecule can be found according Bremer classification.
Resumo:
The objective of this work was to evaluate extreme water table depths in a watershed, using methods for geographical spatial data analysis. Groundwater spatio-temporal dynamics was evaluated in an outcrop of the Guarani Aquifer System. Water table depths were estimated from monitoring of water levels in 23 piezometers and time series modeling available from April 2004 to April 2011. For generation of spatial scenarios, geostatistical techniques were used, which incorporated into the prediction ancillary information related to the geomorphological patterns of the watershed, using a digital elevation model. This procedure improved estimates, due to the high correlation between water levels and elevation, and aggregated physical sense to predictions. The scenarios showed differences regarding the extreme levels - too deep or too shallow ones - and can subsidize water planning, efficient water use, and sustainable water management in the watershed.
Resumo:
Objective: To identify spatial patterns in rates of admission for pneumonia among children and relate them to the number of fires reported in the state of Mato Grosso, Brazil. Methods: We conducted an ecological and exploratory study of data from the state of Mato Grosso for 2008 and 2009 on hospital admissions of children aged 0 to 4 years due to pneumonia and on fires in the same period. Admission rates were calculated and choropleth maps were plotted for rates and for fire outbreaks, Moran's I was calculated and the kernel estimator used to identify "hotspots." Data were analyzed using TerraView 3.3.1. Results: Fifteen thousand six hundred eighty-nine children were hospitalized (range zero to 2,315), and there were 161,785 fires (range 7 to 6,454). The average rate of admissions per 1,000 inhabitants was 2.89 (standard deviation [SD] = 5.18) and the number of fires per 1,000 inhabitants was 152.81 (SD = 199.91). Moran's I for the overall number of admissions was I = 0.02 (p = 0.26), the index for rate of admission was I = 0.02 (p = 0.21) and the index for the number of fires was I = 0.31 (p < 0.01). It proved possible to identify four municipalities with elevated rates of admissions for pneumonia. It was also possible to identify two regions with high admission densities. A clustering of fires was evident along what is known as the "arc of deforestation." Conclusions: This study identified municipalities in the state of Mato Grosso that require interventions to reduce rates of admission due to pneumonia and the number fires.
Resumo:
The purpose of this study was to present a spatial analysis of the social vulnerability of teenage pregnancy by geoprocessing data on births and deaths present on the Brazilian Ministry of Health databases in order to support intersectoral management actions and strategies based on spatial analysis in neighborhood areas. The thematic maps of the educational, occupational, birth and marital status of mothers, from all births and deaths in the city, presented a spatial correlation with teenage pregnancy. These maps were superimposed to produce social vulnerability map of adolescent pregnancy and women in general. This process presents itself as a powerful tool for the study of social vulnerability.
Resumo:
Species distribution models (SDMs) can be useful for different conservation purposes. We discuss the importance of fitting spatial scale and using current records and relevant predictors aiming conservation. We choose jaguar (Panthera onca) as a target species and Brazil and Atlantic Forest biome as study areas. We tested two different extents (continent and biome) and resolutions (similar to 4 Km and similar to 1 Km) in Maxent with 186 records and 11 predictors (bioclimatic, elevation, land-use and landscape structure). All models presented satisfactory AUC values (>0.70) and low omission errors (<23%). SDMs were scale-sensitive as the use of reduced extent implied in significant gains to model performance generating more constrained and real predictive distribution maps. Continental-scale models performed poorly in predicting potential current jaguar distribution, but they reached the historic distribution. Specificity increased significantly from coarse to finer-scale models due to the reduction of overprediction. The variability of environmental space (E-space) differed for most of climatic variables between continental and biome-scale and the representation of the E-space by predictors differed significantly (t = 2.42, g.I. = 9, P < 0.05). Refining spatial scale, incorporating landscape variables and improving the quality of biological data are essential for improving model prediction for conservation purposes.
Resumo:
Spatial linear models have been applied in numerous fields such as agriculture, geoscience and environmental sciences, among many others. Spatial dependence structure modelling, using a geostatistical approach, is an indispensable tool to estimate the parameters that define this structure. However, this estimation may be greatly affected by the presence of atypical observations in the sampled data. The purpose of this paper is to use diagnostic techniques to assess the sensitivity of the maximum-likelihood estimators, covariance functions and linear predictor to small perturbations in the data and/or the spatial linear model assumptions. The methodology is illustrated with two real data sets. The results allowed us to conclude that the presence of atypical values in the sample data have a strong influence on thematic maps, changing the spatial dependence structure.
Resumo:
OBJECTIVE: To identify clusters of the major occurrences of leprosy and their associated socioeconomic and demographic factors. METHODS: Cases of leprosy that occurred between 1998 and 2007 in Sao Jose do Rio Preto (southeastern Brazil) were geocodified and the incidence rates were calculated by census tract. A socioeconomic classification score was obtained using principal component analysis of socioeconomic variables. Thematic maps to visualize the spatial distribution of the incidence of leprosy with respect to socioeconomic levels and demographic density were constructed using geostatistics. RESULTS: While the incidence rate for the entire city was 10.4 cases per 100,000 inhabitants annually between 1998 and 2007, the incidence rates of individual census tracts were heterogeneous, with values that ranged from 0 to 26.9 cases per 100,000 inhabitants per year. Areas with a high leprosy incidence were associated with lower socioeconomic levels. There were identified clusters of leprosy cases, however there was no association between disease incidence and demographic density. There was a disparity between the places where the majority of ill people lived and the location of healthcare services. CONCLUSIONS: The spatial analysis techniques utilized identified the poorer neighborhoods of the city as the areas with the highest risk for the disease. These data show that health departments must prioritize politico-administrative policies to minimize the effects of social inequality and improve the standards of living, hygiene, and education of the population in order to reduce the incidence of leprosy.
Resumo:
The correlation of soil fertility x seed physiological potential is very important in the area of seed technology but results published with that theme are contradictory. For this reason, this study to evaluate the correlations between soil chemical properties and physiological potential of soybean seeds. On georeferenced points, both soil and seeds were sampled for analysis of soil fertility and seed physiological potential. Data were assessed by the following analyses: descriptive statistics; Pearson's linear correlation; and geostatistics. The adjusted parameters of the semivariograms were used to produce maps of spatial distribution for each variable. Organic matter content, Mn and Cu showed significant effects on seed germination. Most variables studied presented moderate to high spatial dependence. Germination and accelerated aging of seeds, and P, Ca, Mg, Mn, Cu and Zn showed a better fit to spherical semivariogram: organic matter, pH and K had a better fit to Gaussian model; and V% and Fe showed a better fit to the linear model. The values for range of spatial dependence varied from 89.9 m for P until 651.4 m for Fe. These values should be considered when new samples are collected for assessing soil fertility in this production area.