22 resultados para Solid-state optical probe

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A series of heavy metal oxide (HMO) glasses with composition 26.66B(2)O(3)-16GeO(2)-4 Bi2O3-(53.33-x)PbO-xPbF2 (0 <= x <= 40) were prepared and characterized with respect to their bulk (glass transition and crystallization temperatures, densities, molar volumes) and spectroscopic properties. Homogeneous glasses are formed up to x = 30, while crystallization of beta-PbF2 takes place at higher contents. Substitution of PbO by PbF2 shifts the optical band gap toward higher energies, thereby extending the UV transmission window significantly toward higher frequencies. Raman and infrared absorption spectra can be interpreted in conjunction with published reference data. Using B-11 and F-19 high-resolution solid state NMR as well as B-11/F-19 double resonance methodologies, we develop a quantitative structural description of this material. The fraction of four-coordinate boron is found to be moderately higher compared to that in glasses with the same PbO/B2O3 ratios, suggesting some participation of PbF2 in the network transformation process. This suggestion is confirmed by the F-19 NMR spectra. While the majority of the fluoride ions is present as ionic fluoride, similar to 20% of the fluorine inventory acts as a network modifier, resulting in the formation of four-coordinate BO3/2F- units. These units can be identified by F-19{B-11} rotational echo double resonance and B-11{F-19} cross-polarization magic angle spinning (CPMAS) data. These results provide the first unambiguous evidence of B-F bonding in a PbF2-modified glass system. The majority of the fluoride ions are found in a lead-dominated environment. F-19-F-19 homonuclear dipolar second moments measured by spin echo decay spectroscopy are quantitatively consistent with a model in which these ions are randomly distributed within the network modifier subdomain consisting of PbO, Bi2O3, and PbF2. This model, which implies both the features of atomic scale mixing with the network former borate species and some degree of fluoride ion clustering is consistent with all of the experimental data obtained on these glasses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polarized photoluminescence from weakly coupled random multiple well quasi-three-dimensional electron system is studied in the regime of the integer quantum Hall effect. Two quantum Hall ferromagnetic ground states assigned to the uncorrelated miniband quantum Hall state and to the spontaneous interwell phase coherent dimer quantum Hall state are observed. Photoluminescence associated with these states exhibits features caused by finite-size skyrmions: dramatic reduction of the electron spin polarization when the magnetic field is increased past the filling factor nu = 1. The effective skyrmion size is larger than in two-dimensional electron systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a detailed study of the Baryscan technique, a new efficient alternative to the widespread Z-scan technique which has been demonstrated [Opt. Lett. 36:8, 2011] to reach among the highest sensitivity levels. This method is based upon the measurement of optical nonlinearities by means of beam centroid displacements with a position sensitive detector and is able to deal with any kind of lensing effect. This technique is applied here to measure pump-induced electronic refractive index changes (population lens), which can be discriminated from parasitic thermal effects by using a time-resolved Baryscan experiment. This method is validated by evaluating the polarizability variation at the origin of the population lens observed in the reference Cr3+:GSGG laser material.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The filamentous fungus Paecylomices variotii was able to produce high levels of cell extract and extracellular invertases when grown under submerged fermentation (SbmF) and solid-state fermentation, using agroindustrial products or residues as substrates, mainly soy bran and wheat bran, at 40A degrees C for 72 h and 96 h, respectively. Addition of glucose or fructose (a parts per thousand yen1%; w/v) in SbmF inhibited enzyme production, while the addition of 1% (w/v) peptone as organic nitrogen source enhanced the production by 3.7-fold. However, 1% (w/v) (NH4)(2)HPO4 inhibited enzyme production around 80%. The extracellular form was purified until electrophoretic homogeneity (10.5-fold with 33% recovery) by DEAE-Fractogel and Sephacryl S-200 chromatography. The enzyme is a monomer with molecular mass of 102 kDa estimated by SDS-PAGE with carbohydrate content of 53.6%. Optima of temperature and pH for both, extracellular and cell extract invertases, were 60A degrees C and 4.0-4.5, respectively. Both invertases were stable for 1 h at 60A degrees C with half-lives of 10 min at 70A degrees C. Mg2+, Ba2+ and Mn2+ activated both extracellular and cell extract invertases from P. variotii. The kinetic parameters K-m and V-max for the purified extracellular enzyme corresponded to 2.5 mM and 481 U/mg prot(-1), respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Current studies about lipase production involve the use of agro-industrial residues and newly isolated microorganisms aimed at increasing economic attractiveness of the process. Based on these aspects, the main objective of this work is to perform the partial characterization of enzymatic extracts produced by a newly isolated Penicillium crustosum in solid-state fermentation. Lipase extract presented optimal temperature and pH of 37 A degrees C and 9-10, respectively. The concentrated enzymatic extract showed more stability at 25 A degrees C and pH 7. The enzymes kept 100% of their enzymatic activity until 60 days of storage at 4 and -10 A degrees C. The stability under calcium salts indicated that the hydrolytic activity presented decay with the increase of calcium concentration. The specificity under several substrates indicated good enzyme activities in triglycerides from C4 to C18.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Humicola brevis var. thermoidea cultivated under solid state fermentation in wheat bran and water (1:2 w/v) was a good producer of beta-glucosidase and xylanase. After optimization using response surface methodology the level of xylanase reached 5,791.2 +/- A 411.2 U g(-1), while beta-glucosidase production was increased about 2.6-fold, reaching 20.7 +/- A 1.5 U g(-1). Cellulase levels were negligible. Biochemical characterization of H. brevis beta-glucosidase and xylanase activities showed that they were stable in a wide pH range. Optimum pH for beta-glucosidase and xylanase activities were 5.0 and 5.5, respectively, but the xylanase showed 80 % of maximal activity when assayed at pH 8.0. Both enzymes presented high thermal stability. The beta-glucosidase maintained about 95 % of its activity after 26 h in water at 55 A degrees C, with half-lives of 15.7 h at 60 A degrees C and 5.1 h at 65 A degrees C. The presence of xylose during heat treatment at 65 A degrees C protected beta-glucosidase against thermal inactivation. Xylanase maintained about 80 % of its activity after 200 h in water at 60 A degrees C. Xylose stimulated beta-glucosidase activity up to 1.7-fold, at 200 mmol L-1. The notable features of both xylanase and beta-glucosidase suggest that H. brevis crude culture extract may be useful to compose efficient enzymatic cocktails for lignocellulosic materials treatment or paper pulp biobleaching.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study, Cross-Polarization Magic-angle Spinning CP/MAS, 2D Exchange, Centerband-Only Detection of Exchange (CODEX), and Separated-Local-Field (SLF) NMR experiments were used to study the molecular dynamics of poly(ethylene glycol) (PEG) inside Hectorite/PEG intercalation compounds in both single- and double-layer configurations. The results revealed that the overall amplitude of the motions of the PEG chain in the single-layer configuration is considerably smaller than that observed for the double-layer intercalation compound. This result indicates that the effect of having the polymer chain interacting with both clay platelets is to produce a substantial decrease in the motional amplitudes of those chains. The presence of these dynamically restricted segments might be explained by the presence of anchoring points between the clay platelets and the PEG oxygen atoms, which was induced by the Na+ cations. By comparing the PEG motional amplitudes of the double-layered nanocomposites composed of polymers with different molecular weights, a decrease in the motional amplitude for the smaller PEG chain was observed, which might also be understood using the presence of anchoring points.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work reports on the photophysical properties of zinc porphyrins meso-tetrakis methylpyridiniumyl (Zn2+TMPyP) and meso-tetrakis sulfonatophenyl (Zn2+TPPS) in homogeneous aqueous solutions and in the presence of sodium dodecyl sulfate (SDS) and cetyltrimethyl ammonium bromide (CTAB) micelles. The excited-state dynamic was investigated with the Z-scan technique, UV-Vis absorption, and fluorescence spectroscopy. Photophysical parameters were obtained by analyzing the experimental data with a conventional five-energy-level diagram. The interaction of the charged side porphyrin groups with oppositely charged surfactants can reduce the electrostatic repulsion between porphyrin molecules leading to aggregation, which affected the porphyrin characteristics such as absorption cross-sections, lifetimes and quantum yields. The interaction between anionic ZnTPPS with cationic CTAB micelles induced the formation of porphyrin J-aggregates, while this effect was not observed in the interaction of ZnTMPyP with SDS micelles. This difference is, probably, due to the difference in electrostatic repulsion between the porphyrin molecules. The insights obtained by these results are important for the understanding of the photophysical behavior of porphyrins, regarding potential applications in pharmacokinetics as encapsulation of photosensitizer for drug delivery systems and in its interaction with cellular membrane.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The intermetallic compounds ScPdZn and ScPtZn were prepared from the elements by high-frequency melting in sealed tantalum ampoules. Both structures were refined from single crystal X-ray diffractometer data: YAlGe type, Cmcm, a = 429.53(8), b = 907.7(1), c = 527.86(1) pm, wR2 = 0.0375, 231 F2 values, for ScPdZn and a = 425.3(1), b = 918.4(2), c = 523.3(1) pm, wR2 = 0.0399, 213 F2 values for ScPtZn with 14 variables per refinement. The structures are orthorhombically distorted variants of the AlB2 type. The scandium and palladium (platinum atoms) build up ordered networks Sc3Pd3 and Sc3Pt3 (boron networks) which are slightly shifted with respect to each other. These networks are penetrated by chains of zinc atoms (262 pm in ScPtZn) which correspond to the aluminum positions, i.e. Zn(ScPd) and Zn(ScPt). The corresponding group-subgroup scheme and the differences in chemical bonding with respect to other AlB2-derived REPdZn and REPtZn compounds are discussed. 45Sc solid state NMR spectra confirm the single crystallographic scandium sites. From electronic band structure calculations the two compounds are found metallic with free electron like behavior at the Fermi level. A larger cohesive energy for ScPtZn suggests a more strongly bonded intermetallic than ScPdZn. Electron localization and overlap population analyses identify the largest bonding for scandium with the transition metal (Pd, Pt).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, barium zirconate (BaZrO3) ceramics synthesized by solid state reaction method and sintered at 1670 degrees C for 4 h were characterized by X-ray diffraction (XRD), Rietveld refinement, and Fourier transform infrared (FT-IR) spectroscopy. XRD patterns, Rietveld refinement data and FT-IR spectra which confirmed that BaZrO3 ceramics have a perovskite-type cubic structure. Optical properties were investigated by ultraviolet-visible (UV-vis) absorption and photoluminescence (PL) measurements. UV-vis absorption spectra suggested an indirect allowed transition with the existence of intermediary energy levels within the band gap. Intense visible green PL emission was observed in BaZrO3 ceramics upon excitation with a 350 nm wavelength. This behavior is due to a majority of deep defects within the band gap caused by symmetry breaking in octahedral [ZrO6] clusters in the lattice. The microwave dielectric constant and quality factor were measured using the method proposed by Hakki-Coleman. The dielectric resonator antenna (DRA) was investigated experimentally and numerically using a monopole antenna through an infinite ground plane and Ansoft's high frequency structure simulator software, respectively. The required resonance frequency and bandwidth of DRA were investigated by adjusting the dimension of the same material. (C) 2011 Elsevier Ltd and Techna Group S.r.l. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Samples of 40SiO(2)center dot 30Na(2)O center dot 1Al(2)O(3)center dot(29 - x)B2O3 center dot xFe(2)O(3) (mol%), with 0.0 <= x <= 17.5, were prepared by the fusion method and investigated by electron paramagnetic resonance (EPR), optical absorption (OA) and Mossbauer spectroscopy (MS). The EPR spectra of the as-synthesized samples exhibit two well-defined EPR signals around g = 4.27 and g = 2.01 and a visible EPR shoulder around g = 6.4, assigned to isolated Fe3+ ion complexes (g = 4.27 and g = 6.4) and Fe3+-based clusters (g = 2.01). Analyses of both EPR line intensity and line width support the model picture of Fe3+-based clusters built in from two sources of isolated ions, namely Fe2+ and Fe3+; the ferrous ion being used to build in iron-based clusters at lower x-content (below about x = 2.5%) whereas the ferric ion is used to build in iron-based clusters at higher x-content (above about x = 2.5%). The presence of Fe2+ ions incorporated within the glass template is supported by OA data with a strong band around 1100 nm due to the spin-allowed E-5(g)-T-5(2g) transition in an octahedral coordination with oxygen. Additionally, Mossbauer data (isomer shift and quadrupole splitting) confirm incorporation of both Fe2+ and Fe3+ ions within the template, more likely in tetrahedral-like environments. We hypothesize that ferrous ions are incorporated within the glass template as FeO4 complex resulting from replacing silicon in non-bridging oxygen (SiO3O-) sites whereas ferric ions are incorporated as FeO4 complex resulting from replacing silicon in bridging-like oxygen silicate groups (SiO4). (C) 2012 Elsevier Masson SAS. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

5E-Phenylethenylbenzofuroxan (5PhEBfx) was reported as an excellent anti-Chagas drug candidate. However, its oral bioavailability was affected by the crystallization process. Two samples exhibiting variable in vivo activity was investigated: a thin yellow powder (5PhEBfx-Y) and orange needles (5PhEBfx-O). X-ray powder diffraction, differential scanning calorimetry, vibrational spectroscopy, optical and electron scanning microscopies were applied to investigate both solid forms in order to correlate the solid-state properties with the variable bioavailability of 5PhEBfx. It was observed that 5PhEBfx-Y have a better solubility and consequently higher bioavailability when compared with 5PhEBfx-O. This result suggests that the difference of activity between these two 5E-Phenylethenylbenzofuroxanes could be associated with the solid forms, which also cause the coloration variation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A Nd:YLF/KGW Raman laser has been investigated in this work. We have demonstrated CW output powers at six different wavelengths, 1147 nm (0.70 W), 1163 nm (0.95 W), 549 nm (0.65 W), 552 nm (1.90 W), 573 nm (0.60 W) and 581 nm (1.10 W), with higher peak powers achieved under quasi-CW operation. Raman conversion of the 1053 nm fundamental emission is reported for the first time, enabling two new wavelengths in crystalline Raman lasers, 549 nm and 552 nm. The weak thermal lensing associated with Nd:YLF has enabled to achieve good beam quality, M-2 <= 2.0, and stable operation in relatively long cavities. (C) 2012 Optical Society of America

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The dependences of phase stability and solid state phase transitions on the crystallite size in ZrO2-10, 12 and 14 mol% Sc2O3 nanopowders are investigated by X-ray powder diffraction using a synchrotron source (S-XPD). The average crystallite sizes lie within the range of 35 to 100 nm, approximately. At room temperature these solid solutions were previously characterised as mixtures of a cubic phase and one or two rhombohedral phases, beta and gamma, with their fractions depending on composition and average crystallite sizes. In this study, it is shown that at high temperatures these solid solutions become cubic single-phased. The size-dependent temperatures of the transitions from the rhombohedral phases to the cubic phase at high temperature are determined through the analyses of a number of S-XPD patterns. These transitions were studied on cooling and on heating, exhibiting hysteresis effects whose relevant features are size and composition dependent.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We performed ab initio calculations of the electronic structures of bulk CdSe and CdTe, and their interface band alignments on the CdSe in-plane lattice parameters. For this, we employed the LDA-1/2 self-energy correction scheme [L.G. Ferreira, M. Marques, L.K. Teles, Phys. Rev. B 78 (2008) 125116] to obtain corrected band gaps and band offsets. Our calculations include the spin-orbit effects for the bulk cases, which have shown to be of importance for the equilibrium systems and are possibly degraded in these strained semiconductors. Therefore, the SO showed reduced importance for the band alignment of this particular system. Moreover, the electronic structure calculated along the transition region across the CdSe/CdTe interface shows an interesting non-monotonic variation of the band gap in the range 0.8-1.8 eV, which may enhance the absorption of light for corresponding frequencies at the interface between these two materials in photovoltaic applications. (C) 2012 Elsevier B.V. All rights reserved.