17 resultados para Sludge drying
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
The sludge generated by sewage treatment which meets regulatory standards can be used in agriculture. With this understanding, the focus of this study is the evaluation of the agricultural characteristics and inorganic substances in excess activated sludge, which was subjected to drying in a greenhouse. The variables (factor) evaluated during the drying process were: type of sludge (digested or not digested), addition of lime to the sludge, and the physical layout and rotation of sludge in the greenhouse. The parameters monitored for this assessment were moisture, volatile solids and pH. The greenhouse cover and sides were made of translucent plastic to allow the penetration of solar radiation and prevent water from entering. A impermeable floor was used. The sludge was generated in sewage treatment plants located in the metropolitan region of Grande Vitoria, Espirito Santo, Brazil. The solar drying of wastewater sludge in a greenhouse presented satisfactory results.
Resumo:
We evaluated the effects of air-drying distance and bond surface area on the shear bond strength of a 2-step etch-and-rinse adhesive. A total of 120 bovine anterior teeth were equally divided into 6 main groups based on bonding surface area. The main groups were divided into sub-groups (n = 5) according to air-drying distance. The shear strength was determined using a universal testing machine at a crosshead speed of 0.5 mm/min. The averaged results were subjected to two-way ANOVA and Tukey's test (alpha = 0.05). Two-way ANOVA testing identified no significant cross-product interactions (p > 0.05), but the main factors of area (p < 0.0001) and air-drying distance (p < 0.00001) significantly affected the mean bond strength. Shorter air-drying distances improved bond strength, and increased surface area decreased the bond strength.
Resumo:
The effects of drying air inlet temperature (IT) and concentration of Aerosil 200 (C-A) on several properties of spray-dried Apeiba tibourbou extracts were investigated following a 3(2) full factorial design. Powder recovery varied from 9.83 to 46.95% and dried products showed moisture contents below 7%. Although the spray-dried products lost some of their polyphenols, they still present excellent antioxidant activity, opening perspectives for its use to medicinal purpose. C-A exerted a key role on the properties of spray-dried extracts, while IT did not present a significative influence. Aerosil (R) 200 proved to be an interesting alternative as an excipient for the drying of the herbal extract, even at intermediate concentrations such as 15%. The best combination of conditions to use for obtaining dry A. tibourbou extracts with adequate physicochemical and functional properties involves an IT of 100 degrees C and a C-A of 15%.
Resumo:
Transplantation brings hope for many patients. A multidisciplinary approach on this field aims at creating biologically functional tissues to be used as implants and prostheses. The freeze-drying process allows the fundamental properties of these materials to be preserved, making future manipulation and storage easier. Optimizing a freeze-drying cycle is of great importance since it aims at reducing process costs while increasing product quality of this time-and-energy-consuming process. Mathematical modeling comes as a tool to help a better understanding of the process variables behavior and consequently it helps optimization studies. Freeze-drying microscopy is a technique usually applied to determine critical temperatures of liquid formulations. It has been used in this work to determine the sublimation rates of a biological tissue freeze-drying. The sublimation rates were measured from the speed of the moving interface between the dried and the frozen layer under 21.33, 42.66 and 63.99 Pa. The studied variables were used in a theoretical model to simulate various temperature profiles of the freeze-drying process. Good agreement between the experimental and the simulated results was found.
Resumo:
CHEMICAL CHANGES AND ZINC PHYTOAVAILABILITY IN SEWAGE SLUDGE-AMENDED SOIL ESTIMATED BY THE ISOTOPIC METHOD. Zn availability in Red Latossol (Rhodic Ferralsol) of different pH amended with different rates of sewage sludge was studied by the isotopic Zn-65 L value method. Soil chemical properties were found to be altered by SS addition. Zn concentration and Zn derived from SS (ZnpfSS) in plant, and Zn phytoavailability (L value), were increased with increasing SS rates. The linear correlation coefficient of plant Zn with SS rates and with L value was significant at 1% probability. The L value proved an efficient method for predicting Zn phytoavailability in sewage sludge-amended soil with different pH under the soil conditions studied.
Resumo:
The microencapsulation of Lippia sidoides extracts in blends of carbohydrates was investigated. The extraction conditions were determined through a 2(2) factorial design. The effects of the plant:solvent ratio (A - 7.5:100 and 15:100 m/m) and the extraction time (B - 30 and 90 min) on thymol content of extractive solutions were evaluated, using a 2:1 (v/v) of ethanol:water at a temperature of 50 degrees C, as a solvent system. The selected extract was subjected to spray drying. Blends of maltodextrin and gum arabic at different proportions (4:1; 3:2; 2:3; 0:1) (m/m) were used as encapsulating material. The protective effects of the maltodextrin and gum arabic blends were evaluated by determination of the thymol retention in the dried product, which ranged from 70.2 to 84.2% (related to the content in the extractive solution). An increase in the gum arabic to maltodextrin (DE10) ratio has positive effect on thymol retention. L. sidoides extracts and spray-dried products showed antifungal activity against tested fungal strains (Candida albicans - ATCC 64548, Candida glabrata - ATCC 90030, Candida krusei - ATCC 6258, and Candida parapsilosis - ATCC 22019), evidencing their potential as a natural antifungal agent for medicinal, food, and cosmeceutical purposes. (C) 2012 The Institution of Chemical Engineers. Published by Elsevier B.V. All rights reserved.
Resumo:
Microencapsulation can be an alternative to minimize lycopene instability. Thus, the aim of this study was to microencapsulate lycopene by spray drying, using a modified starch (Capsul (R)) as an encapsulating agent, and to assess the functionality of the capsules applying them in cake. The quantity of lycopene was varied at 5, 10 and 15% in a solution containing 30% of solids in order to obtain the microcapsules. These microcapsules were evaluated as to encapsulation efficiency and morphology and then submitted to a stability test and applied in cakes. Encapsulation efficiency values varied between 21 and 29%. The microcapsules had a rounded outer surface with the formation of concavities and they varied in size. The stability test revealed that microencapsulation offered greater protection to lycopene compared to its free form and it was observed that the microcapsules were able to release pigment and color the studied food system in a homogenous manner. (C) 2011 The Institution of Chemical Engineers. Published by Elsevier B.V. All rights reserved.
Resumo:
This article presents an overview of relevant issues to be considered in the development of standardized phytochemical preparations, focusing on the use of the spouted bed as a drying method. Aspects related to the effects of feed composition properties and processing parameters on system performance and product quality are addressed. From the information presented, it can be concluded that the spouted bed technology can be successfully applied for production of high-quality phytochemical preparations suitable for food and pharmaceutical purposes, considering the requirements for product safety, quality, and efficacy. Nevertheless, it should be emphasized that, at this time, the proposed technology is appropriate for small-scale production, mainly due to difficulties concerning scale-up, modeling, and the simulation of spouted bed systems, and also for predicting product properties and system behavior during operation.
Resumo:
Through a series of experiments, the genotoxic/mutagenic and carcinogenic potential of sewage sludge was assessed. Male Wistar rats were randomly assigned to four groups: Group 1 - negative control; Group 2 - liver carcinogenesis initiated by diethylnitrosamine (DEN; 200 mg/kg i.p.); Group 3 and G4-liver carcinogenesis initiated by DEN and fed 10,000 ppm or 50,000 ppm of sewage sludge. The animals were submitted to a 70% partial hepatectomy at the 3rd week. Livers were processed for routine histological analysis and immunohistochemistry, in order to detect glutathione S-transferase positive altered hepatocyte foci (GST-P+ AHF). Peripheral blood samples for the comet assay were obtained from the periorbital plexus immediately prior to sacrificing. Polychromatic erythrocytes (PCEs) were analyzed in femoral bone-marrow smears, and the frequencies of those micronucleated (MNPCEs) registered. There was no sewage-sludge-induced increase in frequency of either DNA damage in peripheral blood leucocytes, or MNPCEs in the femoral bone marrow. Also, there was no increase in the levels of DNA damage, in the frequency of MNPCEs, and in the development of GST-P AHF when compared with the respective control group.
Resumo:
The Corymbia citriodora is one of the most important forest species in Brazil and the reason is the diversity of its use, because it produces good quality wood and the leaves may be used for essential oil production. Although, there are not many studies about species and the handling effect in the nutritional balance. This study aimed to evaluate the biomass production and nutrient balance in the conventional production of essential oil and wood of Corymbia citriodora with sewage sludge application. The experiment design established was the randomized blocks, with four replicates and two treatments: 1 - fertilization with 10 tons ha(-1) (dry mass) of sewage sludge, supplemented with K and B, and 2 - mineral fertilization. It was evaluated the aerial biomass production, the nutrient export of the leaves, the essential oil and wood production at four years old. The trees that received application of sewage sludge produced 20 % more leaves biomass than the trees with mineral fertilization, resulting in larger oil production. Besides, the trees with sewage sludge application produced 14.2 tons ha(-1) yr(-1) of woody biomass that was 27 % higher than the treatment with mineral fertilization. For both treatments the N balance was negative, but treatment with sewage sludge application (-45 kg ha(-1)) was four times lower than the observed on mineral fertilization treatment (-185 kg ha(-1)). It may be concluded in this paper that the application of sewage sludge benefits the production of leaves biomass, essential oil and wood, besides result better nutritional balance of the Corymbia citriodora production system.
Resumo:
The impact of tannery sludge application on soil microbial community and diversity is poorly understood. We studied the microbial community in an agricultural soil following two applications (2006 and 2007) of tannery sludge with annual application rates of 0.0,2.3 and 22.6 Mg ha(-1). The soil was sampled 12 and 271 days after the second (2007) application. Community structure was assessed via a phospholipid fatty acid analysis, and the physiological profile of the soil microbial community via the Biolog method. Tannery sludge application changed soil chemical properties, increasing the soil pH and electrical conductivity as well as available P and mineral N concentrations. The higher sludge application rate changed the community structure and the physiological profile of the microbial community at both sampling dates. However, there is no clear link between community structure and carbon substrate utilization. According to the Distance Based Linear Models Analysis, the fatty acids 16:0 and 117:0 together contributed 84% to the observed PLFA patterns, whereas the chemical properties available P, mineral N, and Ca, and pH together contributed 54%. At 12 days, tannery sludge application increased the average well color development from 0.46 to 0.87 after 48 h, and reduced the time elapsed before reaching the midpoint carbon substrate utilization (s) from 71 to 44 h, an effect still apparent nine months after application of the higher sludge application rate. The dominant signature fatty acids and kinetic parameters (r and s) were correlated to the concentrations of available P. Ca, mineral N, pH and EC. (c) 2012 Elsevier B.V. All rights reserved.
Resumo:
The aim of the present study was to obtain microparticles of hydrochlorothiazide, a diuretic drug that practically insoluble in water, by spray drying and to investigate the influence of process parameters using a three-level, three-factor Box-Behnken design. Process yields, moisture content, particle size, flowability, and solubility were used to evaluate the spray-dried microparticles. The data were analyzed by response surface methodology using analysis of variance. The independent variables studied were outlet temperature, atomization pressure, and drug content. The formulations were prepared using polyvinylpyrrolidone and colloidal silicon dioxide as the hydrophilic carrier and drying aid, respectively. The microparticle yield ranged from 18.15 to 59.02% and resulted in adequate flow (17 to 32 degrees), moisture content between 2.52 to 6.18%, and mean particle size from 45 to 59 mu m. The analysis of variance showed that the factors studied influenced the yields, moisture content, angle of repose, and solubility. Thermal analysis and X-ray diffractometry evidenced no drug interactions or chemical modifications. Photomicrographs obtained by scanning electron microscopy showed spherical particles. The solubility and dissolution rates of hydrochlorothiazide were remarkably improved when compared with pure drug. Therefore, the results confirmed the high potential of the spray-drying technique to obtain microparticulate hydrochlorothiazide with enhanced pharmaceutical and dissolution properties.
Resumo:
The use of sewage sludge is a highly promising practice for the development of sustainable agricultural systems. The objective of this study was to evaluate doses of sewage sludge composted with and without Rhizobium inoculation in leaf N content, nodule number, nodule dry weight and plant during flowering. The experiment was conducted in the greenhouse of the Department of Soil Science and Natural Resources College of Agricultural Sciences of Botucatu, using as substrate used in vessels of 30 liters a Red Yelow Latosol sandy texture with experimental design adopted was randomized blocks constituted for 10 treatments and five doses of composted sewage sludge (0, 10, 20, 30, 40 t ha(-1)) with or without inoculation Bradyrhizobium japonic with three replications. There was an increase in the number and dry weight of nodules and shoot dry mass of soybeans due to the increase of the dose of sludge up to a dose of 20 t ha(-1) and after this dose there was a decrease of these parameters. At a dose of 10 t ha(-1) sludge compost inoculated seeds showed higher for foliar concentrations of N and number of nodules compared with uninoculated seeds. At a dose of 30 t ha(-1) inoculated seeds were higher compared to uninoculated in all parameters.
Resumo:
Microparticles of ketoprofen entrapped in blends of acrylic resins (Eudragit RL 30D and RS 30D) were successfully produced by spray drying. The effects of the proportion ketoprofen : polymer (1: 1 and 1: 3) and of spray-drying parameters (drying gas inlet temperatures of 80 and 100 degrees C; microencapsulating composition feed flow rates of 4 and 6 g/min) on the microparticles properties (drug content, encapsulation efficiency, mean particle size, moisture content, and dissolution behavior) were evaluated. Differential scanning calorimetry (DSC) thermograms and X-ray diffractograms of the spray-dried product, the free drug, and the physical mixture between the free drug and spray-dried composition (blank) were carried out. Microparticles obtained at inlet temperature of 80 degrees C, feed flow rate of 4 g/min, and ketoprofen : acrylic resin ratio of 1: 3 presented an encapsulation efficiency of 88.1%, moisture content of 5.8%, production yield around 50%, and a higher reduction in dissolution rate of the entrapped ketoprofen. Sigmoidal shape dissolution profiles were presented by the spray-dried microparticles. The dissolution profiles were relatively well described by the Weibull model, a showing high coefficient of determination, R-2, and a mean absolute error between experimental and estimated values of between 4.6 and 10.1%.
Resumo:
We investigated the effects of viable, extended freeze-drying (EFD) or heat-killed (HK) Mycobacterium bovis bacillus CalmetteGuerin (BCG) in respiratory burst activity, gene expression of CYBB and NCF1 encoding components of the human phagocyte nicotinamide adenine dinucleotide (NADPH) oxidase, TLR2 expression, and in IL-10 and TNF-a cytokine production by human peripheral blood mononuclear cells (PBMCs). Viable BCG significantly inhibited TLR2 and CYBB gene expression, as well as superoxide release by human PBMC. All BCG stimuli augmented IL-10 release, but only HK BCG or viable BCG increased TNF-a release by PBMCs. Our studies show that viable BCG can impair the NADPH oxidase system activation and the TLR2 route in human PBMCs. As well, different BCG preparations can distinctly influence cytokine production by human PBMCs.