15 resultados para Slice Topology

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The broad goals of verifiable visualization rely on correct algorithmic implementations. We extend a framework for verification of isosurfacing implementations to check topological properties. Specifically, we use stratified Morse theory and digital topology to design algorithms which verify topological invariants. Our extended framework reveals unexpected behavior and coding mistakes in popular publicly available isosurface codes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work we compare the simple singularities of germs from R-2 to R-p with multiplicity 2 or 3 with the singularities appearing in the set of 2-ruled surfaces. We also study the topological type of all finitely determined singularities by studying generic projections of these singularities in R-3. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Piezoelectric materials can be used to convert oscillatory mechanical energy into electrical energy. Energy harvesting devices are designed to capture the ambient energy surrounding the electronics and convert it into usable electrical energy. The design of energy harvesting devices is not obvious, requiring optimization procedures. This paper investigates the influence of pattern gradation using topology optimization on the design of piezocomposite energy harvesting devices based on bending behavior. The objective function consists of maximizing the electric power generated in a load resistor. A projection scheme is employed to compute the element densities from design variables and control the length scale of the material density. Examples of two-dimensional piezocomposite energy harvesting devices are presented and discussed using the proposed method. The numerical results illustrate that pattern gradation constraints help to increase the electric power generated in a load resistor and guides the problem toward a more stable solution. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have prepared a DNA-mimicry of nucleosides in which the anti-HIV drug lamivudine (beta-L-2',3'-dideoxy-3'-thiacytidine, 3TC) self-assembles into a base-paired and helically base-stacked hexagonal structure. Face-to-face and face-to-tail stacked 3TC=3TC dimers base-paired through two hydrogen bonds between neutral cytosines by either N-H center dot center dot center dot O or N-H center dot center dot center dot N atoms give rise to a right-handed DNA-mimicry of lamivudine with an unusual highly symmetric hexagonal lattice and topology. In addition, a base-paired and base-stacked supramolecular architecture of lamivudine hemihydrochloride hemihydrate was also obtained as a result of our crystal screenings. This structure is formed through partially face-to-face stacked lamivudine pairs held together by protonated and neutral fragments. However, no helical stacking occurs in this structure in which lamivudine also adopts unusual conformations as the C1'-endo and C1'-exo sugar puckers and cytosine orientations intermediate between the anti and syn conformations. As a conclusion drawn from the nucleoside duplex, the hexagonal DNA-mimicry of lamivudine reveals that such double-stranded helices can be assembled without counterions and organic solvents but with higher crystallographic symmetry instead, because only water crystallizes together with lamivudine in this structure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Piezoresistive sensors are commonly made of a piezoresistive membrane attached to a flexible substrate, a plate. They have been widely studied and used in several applications. It has been found that the size, position and geometry of the piezoresistive membrane may affect the performance of the sensors. Based on this remark, in this work, a topology optimization methodology for the design of piezoresistive plate-based sensors, for which both the piezoresistive membrane and the flexible substrate disposition can be optimized, is evaluated. Perfect coupling conditions between the substrate and the membrane based on the `layerwise' theory for laminated plates, and a material model for the piezoresistive membrane based on the solid isotropic material with penalization model, are employed. The design goal is to obtain the configuration of material that maximizes the sensor sensitivity to external loading, as well as the stiffness of the sensor to particular loads, which depend on the case (application) studied. The proposed approach is evaluated by studying two distinct examples: the optimization of an atomic force microscope probe and a pressure sensor. The results suggest that the performance of the sensors can be improved by using the proposed approach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Various factors are believed to govern the selection of references in citation networks, but a precise, quantitative determination of their importance has remained elusive. In this paper, we show that three factors can account for the referencing pattern of citation networks for two topics, namely "graphenes" and "complex networks", thus allowing one to reproduce the topological features of the networks built with papers being the nodes and the edges established by citations. The most relevant factor was content similarity, while the other two - in-degree (i.e. citation counts) and age of publication - had varying importance depending on the topic studied. This dependence indicates that additional factors could play a role. Indeed, by intuition one should expect the reputation (or visibility) of authors and/or institutions to affect the referencing pattern, and this is only indirectly considered via the in-degree that should correlate with such reputation. Because information on reputation is not readily available, we simulated its effect on artificial citation networks considering two communities with distinct fitness (visibility) parameters. One community was assumed to have twice the fitness value of the other, which amounts to a double probability for a paper being cited. While the h-index for authors in the community with larger fitness evolved with time with slightly higher values than for the control network (no fitness considered), a drastic effect was noted for the community with smaller fitness. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sensor and actuator based on laminated piezocomposite shells have shown increasing demand in the field of smart structures. The distribution of piezoelectric material within material layers affects the performance of these structures; therefore, its amount, shape, size, placement, and polarization should be simultaneously considered in an optimization problem. In addition, previous works suggest the concept of laminated piezocomposite structure that includes fiber-reinforced composite layer can increase the performance of these piezoelectric transducers; however, the design optimization of these devices has not been fully explored yet. Thus, this work aims the development of a methodology using topology optimization techniques for static design of laminated piezocomposite shell structures by considering the optimization of piezoelectric material and polarization distributions together with the optimization of the fiber angle of the composite orthotropic layers, which is free to assume different values along the same composite layer. The finite element model is based on the laminated piezoelectric shell theory, using the degenerate three-dimensional solid approach and first-order shell theory kinematics that accounts for the transverse shear deformation and rotary inertia effects. The topology optimization formulation is implemented by combining the piezoelectric material with penalization and polarization model and the discrete material optimization, where the design variables describe the amount of piezoelectric material and polarization sign at each finite element, with the fiber angles, respectively. Three different objective functions are formulated for the design of actuators, sensors, and energy harvesters. Results of laminated piezocomposite shell transducers are presented to illustrate the method. Copyright (C) 2012 John Wiley & Sons, Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electrothermomechanical MEMS are essentially microactuators that operate based on the thermoelastic effect induced by the Joule heating of the structure. They can be easily fabricated and require relatively low excitation voltages. However, the actuation time of an electrothermomechanical microdevice is higher than the actuation times related to electrostatic and piezoelectric actuation principles. Thus, in this research, we propose an optimization framework based on the topology optimization method applied to transient problems, to design electrothermomechanical microactuators for response time reduction. The objective is to maximize the integral of the output displacement of the actuator, which is a function of time. The finite element equations that govern the time response of the actuators are provided. Furthermore, the Solid Isotropic Material with Penalization model and Sequential Linear Programming are employed. Finally, a smoothing filter is implemented to control the solution. Results aiming at two distinct applications suggest the proposed approach can provide more than 50% faster actuators. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

O artigo apresenta uma reflexão sobre a gestão do processo de projeto paramétrico, com superfícies complexas, baseado em duas experiências realizadas no Instituto de Arquitetura e Urbanismo, da USP de São Carlos, pelo grupo de pesquisa Nomads.usp. SLICE é o resultado parcial de um pavilhão temporário, com superfícies complexas, desenvolvido por meio de projeto paramétrico e técnicas de fabricação digital. Utilizou-se o procedimento de uma pesquisa-ação2 com alunos de graduação e recém-formados em arquitetura, arquitetos do Nomads.usp e a indústria. Os experimentos apontaram para reflexões sobre algumas mudanças na gestão destes processos, para facilitar a viabilidade técnico-construtiva e gerar conhecimento nas áreas de projeto paramétrico, fabricação digital e gestão. O artigo tem caráter exploratório e o desafio é entender e avaliar a gestão do projeto paramétrico em relação a restrição de material, custo de execução e tempo de produção.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work addresses the treatment of lower density regions of structures undergoing large deformations during the design process by the topology optimization method (TOM) based on the finite element method. During the design process the nonlinear elastic behavior of the structure is based on exact kinematics. The material model applied in the TOM is based on the solid isotropic microstructure with penalization approach. No void elements are deleted and all internal forces of the nodes surrounding the void elements are considered during the nonlinear equilibrium solution. The distribution of design variables is solved through the method of moving asymptotes, in which the sensitivity of the objective function is obtained directly. In addition, a continuation function and a nonlinear projection function are invoked to obtain a checkerboard free and mesh independent design. 2D examples with both plane strain and plane stress conditions hypothesis are presented and compared. The problem of instability is overcome by adopting a polyconvex constitutive model in conjunction with a suggested relaxation function to stabilize the excessive distorted elements. The exact tangent stiffness matrix is used. The optimal topology results are compared to the results obtained by using the classical Saint Venant–Kirchhoff constitutive law, and strong differences are found.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract This paper describes a design methodology for piezoelectric energy harvester s that thinly encapsulate the mechanical devices and expl oit resonances from higher- order vibrational modes. The direction of polarization determines the sign of the pi ezoelectric tensor to avoid cancellations of electric fields from opposite polarizations in the same circuit. The resultant modified equations of state are solved by finite element method (FEM). Com- bining this method with the solid isotropic material with penalization (SIMP) method for piezoelectric material, we have developed an optimization methodology that optimizes the piezoelectric material layout and polarization direc- tion. Updating the density function of the SIMP method is performed based on sensitivity analysis, the sequen- tial linear programming on the early stage of the opti- mization, and the phase field method on the latter stage

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The importance of mechanical aspects related to cell activity and its environment is becoming more evident due to their influence in stem cell differentiation and in the development of diseases such as atherosclerosis. The mechanical tension homeostasis is related to normal tissue behavior and its lack may be related to the formation of cancer, which shows a higher mechanical tension. Due to the complexity of cellular activity, the application of simplified models may elucidate which factors are really essential and which have a marginal effect. The development of a systematic method to reconstruct the elements involved in the perception of mechanical aspects by the cell may accelerate substantially the validation of these models. This work proposes the development of a routine capable of reconstructing the topology of focal adhesions and the actomyosin portion of the cytoskeleton from the displacement field generated by the cell on a flexible substrate. Another way to think of this problem is to develop an algorithm to reconstruct the forces applied by the cell from the measurements of the substrate displacement, which would be characterized as an inverse problem. For these kind of problems, the Topology Optimization Method (TOM) is suitable to find a solution. TOM is consisted of an iterative application of an optimization method and an analysis method to obtain an optimal distribution of material in a fixed domain. One way to experimentally obtain the substrate displacement is through Traction Force Microscopy (TFM), which also provides the forces applied by the cell. Along with systematically generating the distributions of focal adhesion and actin-myosin for the validation of simplified models, the algorithm also represents a complementary and more phenomenological approach to TFM. As a first approximation, actin fibers and flexible substrate are represented through two-dimensional linear Finite Element Method. Actin contraction is modeled as an initial stress of the FEM elements. Focal adhesions connecting actin and substrate are represented by springs. The algorithm was applied to data obtained from experiments regarding cytoskeletal prestress and micropatterning, comparing the numerical results to the experimental ones

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The equilibrium magnetic field inside axisymmetric plasmas with inversions on the toroidal current density is studied. Structurally stable non-nested magnetic surfaces are considered. For any inversion in the internal current density the magnetic families define several positive current channels about a central negative one. A general expression relating the positive and negative currents is derived in terms of a topological anisotropy parameter. Next, an analytical local solution for the poloidal magnetic flux is derived and shown compatible with current hollow magnetic pitch measurements shown in the literature. Finally, the analytical solution exhibits non-nested magnetic families with positive anisotropy, indicating that the current inside the positive channels have at least twice the magnitude of the central one.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Actually, transition from positive to negative plasma current and quasi-steady-state alternated current (AC) operation have been achieved experimentally without loss of ionization. The large transition times suggest the use of MHD equilibrium to model the intermediate magnetic field configurations for corresponding current density reversals. In the present work we show, by means of Maxwell equations, that the most robust equilibrium for any axisymmetric configuration with reversed current density requires the existence of several nonested families of magnetic surfaces inside the plasma. We also show that the currents inside the nonested families satisfy additive rules restricting the geometry and sizes of the axisymmetric magnetic islands; this is done without restricting the equilibrium through arbitrary functions. Finally, we introduce a local successive approximations method to describe the equilibrium about an arbitrary reversed current density minimum and, consequently, the transition between different nonested topologies is understood in terms of the eccentricity of the toroidal current density level sets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Small scale fluid flow systems have been studied for various applications, such as chemical reagent dosages and cooling devices of compact electronic components. This work proposes to present the complete cycle development of an optimized heat sink designed by using Topology Optimization Method (TOM) for best performance, including minimization of pressure drop in fluid flow and maximization of heat dissipation effects, aiming small scale applications. The TOM is applied to a domain, to obtain an optimized channel topology, according to a given multi-objective function that combines pressure drop minimization and heat transfer maximization. Stokes flow hypothesis is adopted. Moreover, both conduction and forced convection effects are included in the steady-state heat transfer model. The topology optimization procedure combines the Finite Element Method (to carry out the physical analysis) with Sequential Linear Programming (as the optimization algorithm). Two-dimensional topology optimization results of channel layouts obtained for a heat sink design are presented as example to illustrate the design methodology. 3D computational simulations and prototype manufacturing have been carried out to validate the proposed design methodology.