3 resultados para Slant Submanifold
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
We study isoparametric submanifolds of rank at least two in a separable Hilbert space, which are known to be homogeneous by the main result in [E. Heintze and X. Liu, Ann. of Math. (2), 149 (1999), 149-181], and with such a submanifold M and a point x in M we associate a canonical homogeneous structure I" (x) (a certain bilinear map defined on a subspace of T (x) M x T (x) M). We prove that I" (x) , together with the second fundamental form alpha (x) , encodes all the information about M, and we deduce from this the rigidity result that M is completely determined by alpha (x) and (Delta alpha) (x) , thereby making such submanifolds accessible to classification. As an essential step, we show that the one-parameter groups of isometries constructed in [E. Heintze and X. Liu, Ann. of Math. (2), 149 (1999), 149-181] to prove their homogeneity induce smooth and hence everywhere defined Killing fields, implying the continuity of I" (this result also seems to close a gap in [U. Christ, J. Differential Geom., 62 (2002), 1-15]). Here an important tool is the introduction of affine root systems of isoparametric submanifolds.
Resumo:
A singular Riemannian foliation F on a complete Riemannian manifold M is called a polar foliation if, for each regular point p, there is an immersed submanifold Sigma, called section, that passes through p and that meets all the leaves and always perpendicularly. A typical example of a polar foliation is the partition of M into the orbits of a polar action, i.e., an isometric action with sections. In this article we prove that the leaves of H : M -> Sigma, coincide with the level sets of a smooth map H: M -> Sigma, if M is simply connected. In particular, the orbits of a polar action on a simply connected space are level sets of an isoparametric map. This result extends previous results due to the author and Gorodski, Heintze, Liu and Olmos, Carter and West, and Terng.
Resumo:
We investigated the effects of texture gradient and the position of test stimulus in relation to the horizon on the perception of relative sizes. By using the staircase method, 50 participants adjusted the size of a bar presented above, below or on the horizon as it could be perceived in the same size of a bar presented in the lower visual field. Stimuli were presented during 100ms on five background conditions. Perspective gradient contributed more to the overestimation of relative sizes than compression gradient. The sizes of the objects which intercepted the horizon line were overestimated. Visual system was very effective in extracting information from perspective depth cues, making it even during very brief exposure.