3 resultados para Single hard diffraction

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The single machine scheduling problem with a common due date and non-identical ready times for the jobs is examined in this work. Performance is measured by the minimization of the weighted sum of earliness and tardiness penalties of the jobs. Since this problem is NP-hard, the application of constructive heuristics that exploit specific characteristics of the problem to improve their performance is investigated. The proposed approaches are examined through a computational comparative study on a set of 280 benchmark test problems with up to 1000 jobs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

High quality KMo4O6 single crystals with tetragonal structure (space group P4/mbm) have been prepared by fused salt electrolysis. The crystals were studied by scanning electron microscopy (SEM), X-ray diffractometry, electrical resistivity, and magnetization measurements. X-ray powder diffraction patterns and SEM have given some information on the growth of single crystals. Electrical resistivity as a function of temperature shows that the KMo4O6 compound is a bad metal with resistivity change of approximately 30% in the temperature range from 2 to 300K. A metal-insulator transition (MIT), observed at approximately 110K, has been also confirmed for this material. Magnetization as a function of temperature agrees with previous report, however a magnetic ordering has been observed in M(H) curves in the whole temperature range.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Network reconfiguration for service restoration (SR) in distribution systems is a complex optimization problem. For large-scale distribution systems, it is computationally hard to find adequate SR plans in real time since the problem is combinatorial and non-linear, involving several constraints and objectives. Two Multi-Objective Evolutionary Algorithms that use Node-Depth Encoding (NDE) have proved able to efficiently generate adequate SR plans for large distribution systems: (i) one of them is the hybridization of the Non-Dominated Sorting Genetic Algorithm-II (NSGA-II) with NDE, named NSGA-N; (ii) the other is a Multi-Objective Evolutionary Algorithm based on subpopulation tables that uses NDE, named MEAN. Further challenges are faced now, i.e. the design of SR plans for larger systems as good as those for relatively smaller ones and for multiple faults as good as those for one fault (single fault). In order to tackle both challenges, this paper proposes a method that results from the combination of NSGA-N, MEAN and a new heuristic. Such a heuristic focuses on the application of NDE operators to alarming network zones according to technical constraints. The method generates similar quality SR plans in distribution systems of significantly different sizes (from 3860 to 30,880 buses). Moreover, the number of switching operations required to implement the SR plans generated by the proposed method increases in a moderate way with the number of faults.