16 resultados para Single Domain Mechanical Model
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
This article reports on the influence of the magnetization damping on dynamic hysteresis loops in single-domain particles with uniaxial anisotropy. The approach is based on the Neel-Brown theory and the hierarchy of differential recurrence relations, which follow from averaging over the realizations of the stochastic Landau-Lifshitz equation. A new method of solution is proposed, where the resulting system of differential equations is solved directly using optimized algorithms to explore its sparsity. All parameters involved in uniaxial systems are treated in detail, with particular attention given to the frequency dependence. It is shown that in the ferromagnetic resonance region, novel phenomena are observed for even moderately low values of the damping. The hysteresis loops assume remarkably unusual shapes, which are also followed by a pronounced reduction of their heights. Also demonstrated is that these features remain for randomly oriented ensembles and, moreover, are approximately independent of temperature and particle size. (C) 2012 American Institute of Physics. [doi:10.1063/1.3684629]
Resumo:
Understanding how magnetic materials respond to rapidly varying magnetic fields, as in dynamic hysteresis loops, constitutes a complex and physically interesting problem. But in order to accomplish a thorough investigation, one must necessarily consider the effects of thermal fluctuations. Albeit being present in all real systems, these are seldom included in numerical studies. The notable exceptions are the Ising systems, which have been extensively studied in the past, but describe only one of the many mechanisms of magnetization reversal known to occur. In this paper we employ the Stochastic Landau-Lifshitz formalism to study high-frequency hysteresis loops of single-domain particles with uniaxial anisotropy at an arbitrary temperature. We show that in certain conditions the magnetic response may become predominantly out-of-phase and the loops may undergo a dynamic symmetry loss. This is found to be a direct consequence of the competing responses due to the thermal fluctuations and the gyroscopic motion of the magnetization. We have also found the magnetic behavior to be exceedingly sensitive to temperature variations, not only within the superparamagnetic-ferromagnetic transition range usually considered, but specially at even lower temperatures, where the bulk of interesting phenomena is seen to take place. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
We present results for longitudinal dynamic hysteresis in single domain particles with uniaxial anisotropy. The combined influence of temperature, field-sweeping frequency, and field amplitude is discussed in detail. A novel and efficient numerical method is proposed, based on the direct solution of the infinite hierarchy of differential recurrence relations obtained from averaging over the stochastic realizations of the magnetic Langevin equation. (C) 2012 American Institute of Physics. [doi:10.1063/1.3676416]
Resumo:
The objective of this work were apply and provide a preliminary evaluation of the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) performance, for Londrina region. We performed comparison with measurements obtained in meteorological stations. The model was configured to run with three domains with 27,9 and 3 km of grid resolution, using the ndown program and also was realized a simulation with the model configured to run with a single domain using a land use file based in a classified image for region of MODIS sensor. The emission files to supply the chemistry run were generated based in the work of Martins et al., 2012. RADM2 chemical mechanism and MADE/SORGAM modal aerosol models were used in the simulations. The results demonstrated that model was able to represent coherently the formation and dispersion of the pollution in Metropolitan Region of Londrina and also the importance of using the appropriate land use file for the region.
Resumo:
5 We employ the circular-polarization-resolved magnetophotoluminescence technique to probe the spin character of electron and hole states in a GaAs/AlGaAs strongly coupled double-quantum-well system. The photoluminescence (PL) intensities of the lines associated with symmetric and antisymmetric electron states present clear out-of-phase oscillations between integer values of the filling factor. and are caused by magnetic-field-induced changes in the population of occupied Landau levels near to the Fermi level of the system. Moreover, the degree of circular polarization of these emissions also exhibits the oscillatory behavior with increasing magnetic field. Both quantum oscillations observed in the PL intensities and in the degree of polarizations may be understood in terms of a simple single-particle approach model. The k . p method was used to calculate the photoluminescence peak energies and the degree of circular polarizations in the double-quantum-well structure as a function of the magnetic field. These calculations prove that the character of valence band states plays an important role in the determination of the degree of circular polarization and, thus, resulting in a magnetic-field-induced change of the polarization sign.
Resumo:
Magnetic fabric and rock-magnetism studies were performed on the four units of the 578 +/- 3-Ma-old Piracaia pluton (NW of Sao Paulo State, southern Brazil). This intrusion is roughly elliptical (similar to 32 km(2)), composed of (i) coarse-grained monzodiorite (MZD-c), (ii) fine-grained monzodiorite (MZD-f), which is predominant in the pluton, (iii) monzonite heterogeneous (MZN-het), and (iv) quartz syenite (Qz-Sy). Magnetic fabrics were determined by applying both anisotropy of low-field magnetic susceptibility (AMS) and anisotropy of anhysteretic remanent magnetization (AARM). The two fabrics are coaxial. The parallelism between AMS and AARM tensors excludes the presence of a single domain (SD) effect on the AMS fabric of the units. Several rock-magnetism experiments performed in one specimen from each sampled units show that for all of them, the magnetic susceptibility and magnetic fabrics are carried by magnetite grains, which was also observed in the thin sections. Foliations and lineations in the units were successfully determined by applying magnetic methods. Most of the magnetic foliations are steeply dipping or vertical in all units and are roughly parallel to the foliation measured in the field and in the country rocks. In contrast, the magnetic lineations present mostly low plunges for the whole pluton. However, for eight sites, they are steep up to vertical. Thin-section analyses show that rocks from the Piracaia pluton were affected by the regional strain during and after emplacement since magmatic foliation evolves to solid-state fabric in the north of the pluton, indicating that magnetic fabrics in this area of the pluton are related to this strain. Otherwise, the lack of solid-state deformation at outcrop scale and in thin sections precludes deformation in the SW of the pluton. This evidence allows us to interpret the observed magnetic fabrics as primary in origin (magmatic) acquired when the rocks were solidified as a result of magma flow, in which steeply plunging magnetic lineation suggests that a feeder zone could underlie this area.
Resumo:
Magnetotactic bacteria biomineralize magnetic minerals with precisely controlled size, morphology, and stoichiometry. These cosmopolitan bacteria are widely observed in aquatic environments. If preserved after burial, the inorganic remains of magnetotactic bacteria act as magnetofossils that record ancient geomagnetic field variations. They also have potential to provide paleoenvironmental information. In contrast to conventional magnetofossils, giant magnetofossils (most likely produced by eukaryotic organisms) have only been reported once before from Paleocene-Eocene Thermal Maximum (PETM; 55.8 Ma) sediments on the New Jersey coastal plain. Here, using transmission electron microscopic observations, we present evidence for abundant giant magnetofossils, including previously reported elongated prisms and spindles, and new giant bullet-shaped magnetite crystals, in the Southern Ocean near Antarctica, not only during the PETM, but also shortly before and after the PETM. Moreover, we have discovered giant bullet-shaped magnetite crystals from the equatorial Indian Ocean during the Mid-Eocene Climatic Optimum (similar to 40 Ma). Our results indicate a more widespread geographic, environmental, and temporal distribution of giant magnetofossils in the geological record with a link to "hyperthermal" events. Enhanced global weathering during hyperthermals, and expanded suboxic diagenetic environments, probably provided more bioavailable iron that enabled biomineralization of giant magnetofossils. Our micromagnetic modelling indicates the presence of magnetic multi-domain (i.e., not ideal for navigation) and single domain (i.e., ideal for navigation) structures in the giant magnetite particles depending on their size, morphology and spatial arrangement. Different giant magnetite crystal morphologies appear to have had different biological functions, including magnetotaxis and other non-navigational purposes. Our observations suggest that hyperthermals provided ideal conditions for giant magnetofossils, and that these organisms were globally distributed. Much more work is needed to understand the interplay between magnetofossil morphology, climate, nutrient availability, and environmental variability.
Resumo:
Objectives: Cognitive decline related to neurocysticercosis (NC) remains poorly characterized and underdiagnosed. In a cross-sectional study with a prospective phase, we evaluated cognitive decline in patients with strictly calcified form (C-NC), the epidemiologically largest subgroup of NC, and investigated whether there is a spectrum of cognitive abnormalities in the disease. Methods: Forty treatment-naive patients with C-NC aged 37.6 +/- 11.3 years and fulfilling criteria for definitive C-NC were submitted to a comprehensive cognitive and functional evaluation and were compared with 40 patients with active NC (A-NC) and 40 healthy controls (HC) matched for age and education. Patients with dementia were reassessed after 24 months. Results: Patients with C-NC presented 9.4 +/- 3.1 altered test scores out of the 30 from the cognitive battery when compared to HC. No patient with C-NC had dementia and 10 patients (25%) presented cognitive impairment-no dementia (CIND). The A-NC group had 5 patients (12.5%) with dementia and 11 patients (27.5%) with CIND. On follow-up, 3 out of 5 patients with A-NC with dementia previously still presented cystic lesions with scolex on MRI and still had dementia. One patient died and the remaining patient no longer fulfilled criteria for either dementia or CIND, presenting exclusively calcified lesions on neuroimaging. Conclusions: Independently of its phase, NC leads to a spectrum of cognitive abnormalities, ranging from impairment in a single domain, to CIND and, occasionally, to dementia. These findings are more conspicuous during active vesicular phase and less prominent in calcified stages. Neurology (R) 2012; 78: 861-866
Resumo:
Galvao FHF, Soler W, Pompeu E, Waisberg DR, Mello ES, Costa ACL, Teodoro W, Velosa AP, Capelozzi VL, Antonangelo L, Catanozi S, Martins A, Malbouisson LMS, Cruz RJ, Figueira ER, Filho JAR, Chaib E, D'Albuquerque LAC. Immunoglobulin G profile in hyperacute rejection after multivisceral xenotransplantation. Xenotransplantation 2012; 19: 298304. (c) 2012 John Wiley & Sons A/S. Abstract: Introduction: Xenotransplantation is a potential solution for the high mortality of patients on the waiting list for multivisceral transplantation; nevertheless, hyperacute rejection (HAR) hampers this practice and motivates innovative research. In this report, we describe a model of multivisceral xenotransplantation in which we observed immunoglobulin G (IgG) involvement in HAR. Methods: We recovered en bloc multivisceral grafts (distal esophagus, stomach, small intestine, colon, liver, pancreas, and kidneys) from rabbits (n = 20) and implanted them in the swine (n = 15) or rabbits (n = 5, control). Three hours after graft reperfusion, we collected samples from all graft organs for histological study and to assess IgG fixation by immunofluorescence. Histopathologic findings were graded according to previously described methods. Results: No histopathological features of rejection were seen in the rabbit allografts. In the swine-to-rabbit grafts, features of HAR were moderate in the liver and severe in esophagus, stomach, intestines, spleen, pancreas, and kidney. Xenograft vessels were the central target of HAR. The main lesions included edema, hemorrhage, thrombosis, myosites, fibrinoid degeneration, and necrosis. IgG deposition was intense on cell membranes, mainly in the vascular endothelium. Conclusions: Rabbit-to-swine multivisceral xenotransplants undergo moderate HAR in the liver and severe HAR in the other organs. Moderate HAR in the liver suggests a degree of resistance to the humoral immune response in this organ. Strong IgG fixation in cell membranes, including vascular endothelium, confirms HAR characterized by a primary humoral immune response. This model allows appraisal of HAR in multiple organs and investigation of the livers relative resistance to this immune response.
Resumo:
Dietary nitrite and nitrate have been reported as alternative sources of nitric oxide (NO). In this regard, we reported previously that sodium nitrite added to drinking water was able to exert antihypertensive effects in an experimental model of hypertension in a dose-dependent manner. Taking into consideration that nitrite is continuously converted to nitrate in the bloodstream, here we expanded our previous report and evaluate whether a single daily dose of sodium nitrite could exert antihypertensive effects in 2 kidney-1 clip (2K1C) hypertensive rats. Sham-operated and 2K1C rats were treated with vehicle or sodium nitrite (15 mg/kg/day) for 4 weeks. We evaluated the effects induced by sodium nitrite treatment on systolic blood pressure (SBP) and NO markers such as plasma nitrite, nitrite + nitrate (NOx), cGMP, and blood levels of nitrosyl-hemoglobin. In addition, we also evaluated effects of nitrite on oxidative stress and antioxidant enzymes. Dihydroethidium (DHE) was used to evaluate aortic reactive oxygen species (ROS) production by fluorescence microscopy, and plasma levels of thiobarbituric acid-reactive species (TBARS) were measured in plasma samples from all experimental groups. Red blood cell superoxide dismutase (SOD) and catalase activity were evaluated with commercial kits. Sodium nitrite treatment reduced SBP in 2K1C rats (P < 0.05). We found lower plasma nitrite and NOx levels in 2K1C rats compared with normotensive controls (both P < 0.05). Nitrite treatment restored the lower levels of nitrite and NOx. While no change was found in the blood levels of nitrosyl-hemoglobin (P > 0.05), nitrite treatment increased the plasma levels of cGMP in 2K1C rats (P < 0.05). Higher plasma TBARS levels and aortic ROS levels were found in hypertensive rats compared with controls (P < 0.05), and nitrite blunted these alterations. Lower SOD and catalase activities were found in 2K1C hypertensive rats compared with controls (both P < 0.05). Nitrite treatment restored SOD activity (P < 0.05), whereas catalase was not affected. These data suggest that even a single daily oral dose of sodium nitrite is able to lower SBP and exert antioxidant effects in renovascular hypertension.
Resumo:
Objectives. The null hypothesis was that mechanical testing systems used to determine polymerization stress (sigma(pol)) would rank a series of composites similarly. Methods. Two series of composites were tested in the following systems: universal testing machine (UTM) using glass rods as bonding substrate, UTM/acrylic rods, "low compliance device", and single cantilever device ("Bioman"). One series had five experimental composites containing BisGMA:TEGDMA in equimolar concentrations and 60, 65, 70, 75 or 80 wt% of filler. The other series had five commercial composites: Filtek Z250 (3M ESPE), Filtek A110 (3M ESPE), Tetric Ceram (Ivoclar), Heliomolar (Ivoclar) and Point 4 (Kerr). Specimen geometry, dimensions and curing conditions were similar in all systems. sigma(pol) was monitored for 10 min. Volumetric shrinkage (VS) was measured in a mercury dilatometer and elastic modulus (E) was determined by three-point bending. Shrinkage rate was used as a measure of reaction kinetics. ANOVA/Tukey test was performed for each variable, separately for each series. Results. For the experimental composites, sigma(pol) decreased with filler content in all systems, following the variation in VS. For commercial materials, sigma(pol) did not vary in the UTM/acrylic system and showed very few similarities in rankings in the others tests system. Also, no clear relationships were observed between sigma(pol) and VS or E. Significance. The testing systems showed a good agreement for the experimental composites, but very few similarities for the commercial composites. Therefore, comparison of polymerization stress results from different devices must be done carefully. (c) 2012 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Resumo:
We have performed multicanonical simulations to study the critical behavior of the two-dimensional Ising model with dipole interactions. This study concerns the thermodynamic phase transitions in the range of the interaction delta where the phase characterized by striped configurations of width h = 1 is observed. Controversial results obtained from local update algorithms have been reported for this region, including the claimed existence of a second-order phase transition line that becomes first order above a tricritical point located somewhere between delta = 0.85 and 1. Our analysis relies on the complex partition function zeros obtained with high statistics from multicanonical simulations. Finite size scaling relations for the leading partition function zeros yield critical exponents. that are clearly consistent with a single second-order phase transition line, thus excluding such a tricritical point in that region of the phase diagram. This conclusion is further supported by analysis of the specific heat and susceptibility of the orientational order parameter.
Resumo:
This paper presents preliminary results to determine small displacements of a global positioning system (GPS) antenna fastened to a structure using only one L1 GPS receiver. Vibrations, periodic or not, are common in large structures, such as bridges, footbridges, tall buildings, and towers under dynamic loads. The behavior in time and frequency leads to structural analysis studies. The hypothesis of this article is that any large structure that presents vibrations in the centimeter-to-millimeter range can be monitored by phase measurements of a single L1 receiver with a high data rate, as long as the direction of the displacement is pointing to a particular satellite. Within this scenario, the carrier phase will be modulated by antenna displacement. During a period of a few dozen seconds, the relative displacement to the satellite, the satellite clock, and the atmospheric phase delays can be assumed as a polynomial time function. The residuals from a polynomial adjustment contain the phase modulation owing to small displacements, random noise, receiver clock short time instabilities, and multipath. The results showed that it is possible to detect displacements of centimeters in the phase data of a single satellite and millimeters in the difference between the phases of two satellites. After applying a periodic nonsinusoidal displacement of 10 m to the antenna, it is clearly recovered in the difference of the residuals. The time domain spectrum obtained by the fast Fourier transform (FFT) exhibited a defined peak of the third harmonic much more than the random noise using the proposed third-degree polynomial model. DOI: 10.1061/(ASCE)SU.1943-5428.0000070. (C) 2012 American Society of Civil Engineers.
Resumo:
This paper shows theoretical models (analytical formulations) to predict the mechanical behavior of thick composite tubes and how some parameters can influence this behavior. Thus, firstly, it was developed the analytical formulations for a pressurized tube made of composite material with a single thick ply and only one lamination angle. For this case, the stress distribution and the displacement fields are investigated as function of different lamination angles and reinforcement volume fractions. The results obtained by the theoretical model are physic consistent and coherent with the literature information. After that, the previous formulations are extended in order to predict the mechanical behavior of a thick laminated tube. Both analytical formulations are implemented as a computational tool via Matlab code. The results obtained by the computational tool are compared to the finite element analyses, and the stress distribution is considered coherent. Moreover, the engineering computational tool is used to perform failure analysis, using different types of failure criteria, which identifies the damaged ply and the mode of failure.
Resumo:
The viscoelasticity of mammalian lung is determined by the mechanical properties and structural regulation of the airway smooth muscle (ASM). The exposure to polluted air may deteriorate these properties with harmful consequences to individual health. Formaldehyde (FA) is an important indoor pollutant found among volatile organic compounds. This pollutant permeates through the smooth muscle tissue forming covalent bonds between proteins in the extracellular matrix and intracellular protein structure changing mechanical properties of ASM and inducing asthma symptoms, such as airway hyperresponsiveness, even at low concentrations. In the experimental scenario, the mechanical effect of FA is the stiffening of the tissue, but the mechanism behind this effect is not fully understood. Thus, the aim of this study is to reproduce the mechanical behavior of the ASM, such as contraction and stretching, under FA action or not. For this, it was created a two-dimensional viscoelastic network model based on Voronoi tessellation solved using Runge-Kutta method of fourth order. The equilibrium configuration was reached when the forces in different parts of the network were equal. This model simulates the mechanical behavior of ASM through of a network of dashpots and springs. This dashpot-spring mechanical coupling mimics the composition of the actomyosin machinery of ASM through the contraction of springs to a minimum length. We hypothesized that formation of covalent bonds, due to the FA action, can be represented in the model by a simple change in the elastic constant of the springs, while the action of methacholine (MCh) reduce the equilibrium length of the spring. A sigmoid curve of tension as a function of MCh doses was obtained, showing increased tension when the muscle strip was exposed to FA. Our simulations suggest that FA, at a concentration of 0.1 ppm, can affect the elastic properties of the smooth muscle ¯bers by a factor of 120%. We also analyze the dynamic mechanical properties, observing the viscous and elastic behavior of the network. Finally, the proposed model, although simple, incorporates the phenomenology of both MCh and FA and reproduces experimental results observed with in vitro exposure of smooth muscle to FA. Thus, this new mechanical approach incorporates several well know features of the contractile system of the cells in a tissue level model. The model can also be used in different biological scales.