7 resultados para Shear zone

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

100.00% 100.00%

Publicador:

Resumo:

LA-MC-ICP-MS U-Pb zircon dating was performed on syntectonic, early post-collisional granitic and associated mafic rocks that are intrusive in the Brusque Metamorphic Complex and in the Florianopolis Batholith, major tectonic domains separated by the Neoproterozoic Major Gercino Shear Zone (MGSZ) in south Brazil. The inferred ages of magmatic crystallization are consistent with field relationships, and show that the syntectonic granites from both domains are similar, with ages around 630-620 Ma for high-K calc-alkaline metaluminous granites and ca. 610 Ma for slightly peraluminous granites. Although ca. 650 Ma inherited zircon components are identified in granites from both domains, important contrasts on the crustal architecture in each domain are revealed by the patterns of zircon inheritance, indicating different crustal sources for the granites in each domain. The granites from the southern domain (Floriandpolis Batholith) have essentially Neoproterozoic (650-700 Ma and 900-950 Ma) inheritance; with a single 2.0-2.2 Ga inherited age obtained in the peraluminous Mariscal Granite. In the northern Brusque Metamorphic Complex, the metaluminous Rio Pequeno Granite and associated mafic rocks have scarce inherited cores with ages around 1.65 Ga, whereas the slightly peraluminous Serra dos Macacos Granite has abundant Paleoproterozoic (1.8-2.2 Ga) and Archean (2.9-3.4 Ga) inherited zircons. Our results are consistent with the hypothesis that the MGSZ separates domains with distinct geologic evolution; however, the contemporaneity of 630-610 Ma granitic magmatism with similar structural and geochemical patterns on both sides of this major shear zone indicates that these domains were already part of a single continental mass at 630 Ma, reinforcing the post-collisional character of these granites. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Dom Feliciano Belt, situated in southernmost Brazil and Uruguay, contains a large mass of granite-gneissic rocks (also known as Florianopolis/Pelotas Batholith) formed during the pre-, syn- and post-orogenic phases of the Brasiliano/Pan-African cycle. In the NE extreme of this granitic mass, pre-, syn- and post-tectonic granites associated with the Major Gercino Shear Zone (MGSZ) are exposed. The granitic manifestation along the MGSZ can be divided into pre-kinematic tonalitic gneisses, peraluminous high-K calcalkaline early kinematic shoshonitic, and metaluminous post-kinematic granites. U-Pb zircon data suggest an age of 649 +/- 10 Ma for the pre-tectonic gneisses, and a time span from 623 +/- 6 Ma to 588 +/- 3 Ma for the early to post-tectonic magmatism. Negative epsilon Hf (t) values ranging from -4.6 to -14.6 and Hf model ages ranging from 1.64 to 2.39 Ga for magmatic zircons coupled with whole rock Nd model ages ranging from 1.24 to 2.05 Ga and epsilon Nd (t) values ranging from -3.84 to -7.50, point to a crustal derivation for the granitic magmatism. The geochemical and isotope data support a continental magmatic arc generated from melting of dominant Paleoproterozoic crust, and a similar evolution for the granitic batholiths of the eastern Dom Feliciano Belt and western Kaoko Belt. (C) 2011 International Association for Gondwana Research. Published by Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Seismogenic fault reactivation of continental-scale structures has been observed in a few intraplate areas, but its cause is still amatter of debate. The objective of the present study is to analyze two seismic swarms that occurred along the EW-trending Pernambuco ductile shear zone and in a NE-trending branch, in 2007 and 2010 in São Caetano County, Northeastern Brazil.We studied both epicentral areas using a nine- and a seven-station network during 180 and 54 days, respectively. The results indicate that the 2007 swarm correspond to a right-lateral, strike–slip fault with a normal component of slip (strike 74°, dip 60°, and rake−145°) and the 2010 swarmcorresponds to a normal fault (strike 265°, dip 79°, and rake −91°). The former reactivated a NE-trending branch, whereas the latter reactivated the main E-W-trending mylonitic belt of the Pernambuco shear zone. These results are consistent with seismogenic reactivation of this major structure, generated by the present-day EW-trending compression and NS-trending extension, as observed by previous studies. This shear zone was reactivated as rift faults in the Cretaceous during the South America–Africa breakup. However, our study confirms that the basement fabric such as continental-scale ductile shear zones, show evidence of crustal weakness outside areas of previous rifting, and it reveals the potential for large earthquakes along dormant rift segments associated with major basement shear belts.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The basement rock of the Pampean flat-slab (Sierras Pampeanas) in the Central Andes was uplifted and rotated in the Cenozoic era. The Western Sierras Pampeanas are characterised by meta-igneous rocks of Grenvillian Mesoproterozoic age and metasedimentary units metamorphosed in the Ordovician period. These rocks, known as the northern Cuyania composite terrane, were derived from Laurentia and accreted toward Western Gondwana during the Early Paleozoic. The Sierra de Umango is the westernmost range of the Western Sierras Pampeanas.This range is bounded by the Devonian sedimentary rocks of the Precordillera on the western side and Tertiary rocks from the Sierra de Maz and Sierra del Espinal on the eastern side and contains igneous and sedimentary rocks outcroppings from the Famatina System on the far eastern side. The Sierra de Umango evolved during a period of polyphase tectonic activity, including an Ordovician collisional event, a Devonian compressional deformation, Late Paleozoic and Mesozoic extensional faulting and sedimentation (Paganzo and Ischigualasto basins) and compressional deformation of the Andean foreland during the Cenozoic. A Nappe System and an important shear zone, La Puntilla-La Falda Shear Zone (PFSZ), characterise the Ordovician collisional event, which was related to the accretion of Cuyania Terrane to the proto-Andean margin of Gondwana. Three continuous deformational phases are recognised for this event: the D1 phase is distinguished by relics of 51 preserved as internal foliation within interkinematic staurolite por-phyroblasts and likely represents the progressive metamorphic stage; the D2 phase exhibits P-T conditions close to the metamorphic peak that were recorded in an 52 transposition or a mylonitic foliation and determine the main structure of Umango; and the D3 phase is described as a set of tight to recumbent folds with S3 axial plane foliation, often related to thrust faults, indicating the retrogressive metamorphic stage. The Nappe System shows a top-to-the S/SW sense direction of movement, and the PFSZ served as a right lateral ramp in the exhumation process. This structural pattern is indicative of an oblique collision, with the Cuyania Terrane subducting under the proto-Andean margin of Gondwana in the NE direction. This continental subduction and exhumation lasted at least 30 million years, nearly the entire Ordovician period, and produced metamorphic conditions of upper amphibolite-to-granulite facies in medium- to high-pressure regimes. At least two later events deformed the earlier structures: D4 and D5 deformational phases. The D4 deformational phase corresponds to upright folding, with wavelengths of approximately 10 km and a general N-S orientation. These folds modified the S2 surface in an approximately cylindrical manner and are associated with exposed, discrete shear zones in the Silurian Guandacolinos Granite. The cylindrical pattern and subhorizontal axis of the D4 folds indicates that the S2 surface was originally flat-lying. The D4 folds are responsible for preserving the basement unit Juchi Orthogneiss synformal klippen. This deformation corresponds to the Chanica Tectonic during the interval between the Devonian and Carboniferous periods. The D5 deformational phase comprehends cuspate-lobate shaped open plunging folds with E W high-angle axes (D5 folds) and sub-vertical spaced cleavage. The D5 folds and related spaced cleavage deformed the previous structures and could be associated with uplifting during the Andean Cycle. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Neoproterozoic post-collisional period in southern Brazil (650-580 Ma) is characterized by substantial volumes of magma emplaced along the active shear zones that compose the Southern Brazilian Shear Belt. The early-phase syntectonic magmatism (630-610 Ma) is represented by the porphyritic, high-K, metaluminous to peraluminous Quatro Ilhas Granitoids and the younger heterogranular, slightly peraluminous Mariscal Granite. Quatro II has Granitoids include three main petrographic varieties (muscovite-biotite granodiorite mbg; biotite monzogranite - bmz: and leucogranite - lcg) that, although sharing some significant geochemical characteristics, are not strictly comagmatic, as shown by chemical and Sr-Nd-Pb isotope data. The most primitive muscovite-biotite granodiorite was produced by contamination of more mafic melts (possibly with some mantle component) with peraluminous crustal melts; the biotite monzogranite, although more felsic, has higher Ca, MgO,TiO2 and Ba, and lower K2O, FeOt, Sr and Rb contents, possibly reflecting some mixing with coeval mafic magmas of tholeiitic affinity; the leucogranite may be derived from pure crustal melts. The Mariscal Granite is formed by two main granite types which occur intimately associated in the same pluton, one with higher K (5-6.5 wt.% K2O) high Rb and lower CaO, Na2O, Ba and Zr as compared to the other (3-5 wt.% of K2O). The two Mariscal Granite varieties have compositional correspondence with fine-grained granites (fgg) that occur as tabular bodies which intruded the Quatro Ilhas Granoitoids before they were fully crystallized, and are inferred to correspond to the Mariscal Granite feeders, an interpretation that is reinforced by similar U-Pb zircon crystallization ages. The initial evolution of the post-collisional magmatism, marked by the emplacement of the Quatro Ilhas Granitoids varieties, activated sources that produced mantle and crustal magmas whose emplacement was controlled both by flat-lying and transcurrent structures. The transition from thrust to transcurrent-related tectonics coincides with the increase in the proportion of crustal-derived melts. The transcurrent tectonics seems to have played an essential role in the generation of mantle-derived magmas and may have facilitated their interaction with crustal melts which seem to be to a large extent the products of reworking of orthogneiss protoliths. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Field experiments have demonstrated that piles driven into sand can respond to axial cyclic loading in Stable, Unstable or Meta-Stable ways, depending on the combinations of mean and cyclic loads and the number of cycles. An understanding of the three styles of responses is provided by experiments involving a highly instrumented model displacement pile and an array of soil stress sensors installed in fine sand in a pressurised calibration chamber. The different patterns of effective stress developing on and around the shaft are reported, along with the results of static load tests that track the effects on shaft capacity. The interpretation links these observations to the sand's stress strain behaviour. The interface-shear characteristics, the kinematic yielding, the local densification, the growth of a fractured interface-shear zone and the restrained dilatancy at the pile soil interface are all found to be important. The model tests are shown to be compatible with the full-scale behaviour and to provide key information for improving the modelling and the design rules. (C) 2012 The Japanese Geotechnical Society. Production and hosting by Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The early phase of post-collisional granitic magmatism in the Camboriu region, south Brazil, is represented by the porphyritic biotite +/- hornblende Rio Pequeno Granite (RPG; 630-620 Ma) and the younger (similar to 610 Ma), equigranular, biotite +/- muscovite Serra dos Macacos Granite (SMG). The two granite types share some geochemical characteristics, but the more felsic SMG constitutes a distinctive group not related to RPG by simple fractionation processes, as indicated by its lower FeOt, TiO2, K2O/Na2O and higher Zr Al2O3, Na2O, Ba and Sr when compared to RPG of similar SiO2 range. Sr-Nd-Pb isotopes require different sources. The SMG derives from old crustal sources, possibly related to the Paleoproterozoic protoliths of the Camboriu Complex, as indicated by strongly negative epsilon Nd-t (-23 to -24) and unradiogenic Pb (e.g., Pb-206/Pb-204 = 16.0-16.3; Pb-207/Pb-204 = 15.3-15.4) and confirmed by previous LA-MC-ICPMS data showing dominant zircon inheritance of Archean to Paleoproterozoic age. In contrast, the RPG shows less negative epsilon Nd-t (-12 to -15) and a distinctive zircon inheritance pattern with no traces of post-1.6 Ga sources. This is indicative of younger sources whose significance in the regional context is still unclear; some contribution of mantle-derived magmas is indicated by coeval mafic dykes and may account for some of the geochemical and isotopic characteristics of the least differentiated varieties of the RPG. The transcurrent tectonics seems to have played an essential role in the generation of mantle-derived magmas despite their emplacement within a low-strain zone. It may have facilitated their interaction with crustal melts which seem to be to a large extent the products of reworking of Paleoproterozoic orthogneisses from the Camboriu Complex. (C) 2012 Elsevier Ltd. All rights reserved.