8 resultados para Sensory analisys
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Objective: To analyze the shear forces on the vertebral body L4 when submitted to a compression force by means of transmission photoelasticity. Methods: Twelve photoelastic models were divided into three groups, with four models per group, according to the positioning of the sagittal section vertebrae L4-L5 (sections A, B and C). The simulation was performed using a 15N compression force, and the fringe orders were evaluated in the vertebral body L4 by the Tardy compensation method. Results: Photoelastic analysis showed, in general, a homogeneous distribution in the vertebral bodies. The shear forces were higher in section C than B, and higher in B than A. Conclusion: The posterior area of L4, mainly in section C, showed higher shear concentrations, corresponding to a more susceptible area for bone fracture and spondylolisthesis. Economic and Decision Analyses Development of an Economic or Decision Model. Level I
Resumo:
A substantial number of patients with obsessive-compulsive disorder (OCD) report compulsions that are preceded not by obsessions but by subjective experiences known as sensory phenomena. This study aimed to investigate the frequency, severity, and age at onset of sensory phenomena in OCD, as well as to compare OCD patients with and without sensory phenomena in terms of clinical characteristics. We assessed 1,001 consecutive OCD patients, using instruments designed to evaluate the frequency/severity of OC symptoms, tics, anxiety, depression, level of insight and presence/severity of sensory phenomena. All together, 651 (65.0%) subjects reported at least one type of sensory phenomena preceding the repetitive behaviors. Considering the sensory phenomena subtypes, 371 (57.0%) patients had musculoskeletal sensations, 519 (79.7%) had externally triggered "just-right" perceptions, 176 (27.0%) presented internally triggered "just right," 144 (22.1%) had an "energy release," and 240 (36.9%) patients had an "urge only" phenomenon. Sensory phenomena were described as being as more severe than were obsessions by 102(15.7%) patients. Logistic regression analysis showed that the following characteristics were associated with the presence of sensory phenomena: higher frequency and greater severity of the symmetry/ordering/arranging and contamination/washing symptom dimensions; comorbid Tourette syndrome, and a family history of tic disorders. These data suggest that sensory phenomena constitute a poorly understood psychopathological aspect of OCD that merits further investigation. (C) 2012 Elsevier Ireland Ltd. All rights reserved.
Resumo:
BACKGROUND: It is widely accepted that red wines constitute one of the most important sources of dietary polyphenolic antioxidants. However, it is still not known how some variables such as variety, vintage, country of origin, and retail price are associated with the antioxidant activity and sensory profile of South American red wines. In this regard, 80 samples produced in Brazil, Chile and Argentina were assessed in relation to their sensory properties, color and in vitro antioxidant activity, and results were subjected to multivariate statistical techniques. RESULTS: Samples were grouped in clusters, characterized by high, intermediate and low in vitro antioxidant activity, sensory properties and prices. It was possible to observe that wines with high antioxidant activity were associated to high retail prices and overall perception of sensory quality. CONCLUSION: South American wines produced from Vitis vinifera such as Syrah, Malbec and Cabernet Sauvignon had higher in vitro antioxidant activity and also higher sensory quality than wines produced from Vitis labrusca. This result was independent of vintage (2002-2010), corroborating the idea that the same grape varietal, even when produced in different years, displays similar sensory characteristics and antioxidant activity. (C) 2011 Society of Chemical Industry
Resumo:
The effects of deep brain stimulation of the subthalamic nucleus on nonmotor symptoms of Parkinson's disease (PD) rarely have been investigated. Among these, sensory disturbances, including chronic pain (CP), are frequent in these patients. The aim of this study was to evaluate the changes induced by deep brain stimulation in the perception of sensory stimuli, either noxious or innocuous, mediated by small or large nerve fibers. Sensory detection and pain thresholds were assessed in 25 PD patients all in the off-medication condition with the stimulator turned on or off (on- and off-stimulation conditions, respectively). The relationship between the changes induced by surgery on quantitative sensory testing, spontaneous CP, and motor abilities were studied. Quantitative sensory test results obtained in PD patients were compared with those of age-matched healthy subjects. Chronic pain was present in 72% of patients before vs 36% after surgery (P = .019). Compared with healthy subjects, PD patients had an increased sensitivity to innocuous thermal stimuli and mechanical pain, but a reduced sensitivity to innocuous mechanical stimuli. In addition, they had an increased pain rating when painful thermal stimuli were applied, particularly in the off-stimulation condition. In the on-stimulation condition, there was an increased sensitivity to innocuous thermal stimuli but a reduced sensitivity to mechanical or thermal pain. Pain provoked by thermal stimuli was reduced when the stimulator was turned on. Motor improvement positively correlated with changes in warm detection and heat pain thresholds. Subthalamic nucleus deep brain stimulation contributes to relieve pain associated with PD and specifically modulates small fiber-mediated sensations. (C) 2012 International Association for the Study of Pain. Published by Elsevier B. V. All rights reserved.
Resumo:
Motor cortex stimulation is generally suggested as a therapy for patients with chronic and refractory neuropathic pain. However, the mechanisms underlying its analgesic effects are still unknown. In a previous study, we demonstrated that cortical stimulation increases the nociceptive threshold of naive conscious rats with opioid participation. In the present study, we investigated the neurocircuitry involved during the antinociception induced by transdural stimulation of motor cortex in naive rats considering that little is known about the relation between motor cortex and analgesia. The neuronal activation patterns were evaluated in the thalamic nuclei and midbrain periaqueductal gray. Neuronal inactivation in response to motor cortex stimulation was detected in thalamic sites both in terms of immunolabeling (Zif268/Fos) and in the neuronal firing rates in ventral posterolateral nuclei and centromedian-parafascicular thalamic complex. This effect was particularly visible for neurons responsive to nociceptive peripheral stimulation. Furthermore, motor cortex stimulation enhanced neuronal firing rate and Fos immunoreactivity in the ipsilateral periaqueductal gray. We have also observed a decreased Zif268, delta-aminobutyric acid (GABA), and glutamic acid decarboxylase expression within the same region, suggesting an inhibition of GABAergic interneurons of the midbrain periaqueductal gray, consequently activating neurons responsible for the descending pain inhibitory control system. Taken together, the present findings suggest that inhibition of thalamic sensory neurons and disinhibition of the neurons in periaqueductal gray are at least in part responsible for the motor cortex stimulation-induced antinociception. (C) 2012 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.
Resumo:
Background The evolutionary advantages of selective attention are unclear. Since the study of selective attention began, it has been suggested that the nervous system only processes the most relevant stimuli because of its limited capacity [1]. An alternative proposal is that action planning requires the inhibition of irrelevant stimuli, which forces the nervous system to limit its processing [2]. An evolutionary approach might provide additional clues to clarify the role of selective attention. Methods We developed Artificial Life simulations wherein animals were repeatedly presented two objects, "left" and "right", each of which could be "food" or "non-food." The animals' neural networks (multilayer perceptrons) had two input nodes, one for each object, and two output nodes to determine if the animal ate each of the objects. The neural networks also had a variable number of hidden nodes, which determined whether or not it had enough capacity to process both stimuli (Table 1). The evolutionary relevance of the left and the right food objects could also vary depending on how much the animal's fitness was increased when ingesting them (Table 1). We compared sensory processing in animals with or without limited capacity, which evolved in simulations in which the objects had the same or different relevances. Table 1. Nine sets of simulations were performed, varying the values of food objects and the number of hidden nodes in the neural networks. The values of left and right food were swapped during the second half of the simulations. Non-food objects were always worth -3. The evolution of neural networks was simulated by a simple genetic algorithm. Fitness was a function of the number of food and non-food objects each animal ate and the chromosomes determined the node biases and synaptic weights. During each simulation, 10 populations of 20 individuals each evolved in parallel for 20,000 generations, then the relevance of food objects was swapped and the simulation was run again for another 20,000 generations. The neural networks were evaluated by their ability to identify the two objects correctly. The detectability (d') for the left and the right objects was calculated using Signal Detection Theory [3]. Results and conclusion When both stimuli were equally relevant, networks with two hidden nodes only processed one stimulus and ignored the other. With four or eight hidden nodes, they could correctly identify both stimuli. When the stimuli had different relevances, the d' for the most relevant stimulus was higher than the d' for the least relevant stimulus, even when the networks had four or eight hidden nodes. We conclude that selection mechanisms arose in our simulations depending not only on the size of the neuron networks but also on the stimuli's relevance for action.
Resumo:
OBJETIVO: Avaliar os limiares de percepção da pressão em polpas de dois dedos (indicador e mínimo), em uma população brasileira, sem lesão nervosa ou neuropatia. MÉTODOS: Usamos Pressure-Specified Sensory Device, um equipamento computadorizado para obter limiares de percepção da pressão normal, tanto estáticos quanto dinâmicos, e discriminação de dois pontos. RESULTADOS: Testamos a sensibilidade nos dedos, em 30 voluntários. Os testes de significância foram realizados utilizando o teste t de Student. Os valores médios (g/mm²) para os limiares de pressão estática de um e dois pontos (s1PD, s2PD) e discriminação dinâmica de um e dois pontos (m1PD, m2PD) no dedo indicador dominante foram: s1PD = 0,4, m1PD = 0,4, s2PD = 0,48, m2PD = 0,51. CONCLUSÃO: Não há diferença significativa na sensibilidade entre as mãos dominante e não dominante.
Resumo:
Maternal aggression is under the control of a wide variety of factors that prime the females for aggression or trigger the aggressive event. Maternal attacks are triggered by the perception of sensory cues from the intruder, and here we have identified a site in the hypothalamus of lactating rats that is highly responsive to the male intruder—the ventral premammillary nucleus (PMv). The PMv is heavily targeted by the medial amygdalar nucleus, and we used lesion and immediate-early gene studies to test our working hypothesis that the PMv signals the presence of a male intruder and transfers this information to the network organizing maternal aggression. PMv-lesioned dams exhibit significantly reduced maternal aggression, without affecting maternal care. The Fos analysis revealed that PMv influences the activation of hypothalamic and septal sites shown to be mobilized during maternal aggression, including the medial preoptic nucleus (likely to represent an important locus to integrate priming stimuli critical for maternal aggression), the caudal two-thirds of the hypothalamic attack area (comprising the ventrolateral part of the ventromedial hypothalamic nucleus and the adjacent tuberal region of the lateral hypothalamic area, critical for the expression of maternal aggression), and the ventral part of the anterior bed nuclei of the stria terminalis (presently discussed as being involved in controlling neuroendocrine and autonomic responses accompanying maternal aggression). These findings reveal an important role for the PMv in detecting the male intruder and how this nucleus modulates the network controlling maternal aggression.