2 resultados para Sensor array
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Polymeric sensors with improved resistance to organic solvents were produced via the layer-by-layer thin film deposition followed by chemical cross-linking. According to UV-vis spectroscopy, the mass loss of polyaniline/poly(vinyl alcohol) and polyaniline/novolac-type resin based films deposited onto glass slides was less than 20% when they were submitted to successive immersions (up to 3,000 immersion cycles) into commercially available ethanol and gasoline fuel samples. Polyallylamine hydrochloride/nickel tetrasulfonated phthalocyanine films presented similar stability. The electrical responses assessed by impedance spectroscopy of films deposited onto Au-interdigitated microelectrodes were relatively unaffected after continuous or cyclic immersions into both fuels. After these studies, an array including these polymeric sensors was employed to detect adulteration in ethanol and gasoline samples. After principal component analysis, it was possible to conclude that the proposed sensor array is capable to discriminate with remarkable reproducibility ethanol samples containing different amounts of water or else gasoline samples containing different amounts of ethanol. In both examples, more than 90% of data variance was retained in the first principal component. For each type of sample, ethanol and gasoline, it was found a linear correlation between one of the principal components and the sample's composition. These findings allow one to conclude that these films present great potential for the development of reliable and low-cost sensors for fuel analysis in liquid phase.
Resumo:
The association between anisotropic magnetoresistive (AMR) sensor and AC biosusceptometry (ACB) to evaluate gastrointestinal motility is presented. The AMR-ACB system was successfully characterized in a bench-top study, and in vivo results were compared with those obtained by means of simultaneous manometry. Both AMR-ACB and manometry techniques presented high temporal cross correlation between the two periodicals signals (R = 0.9 +/- 0.1; P < 0.05). The contraction frequencies using AMR-ACB were 73.9 +/- 7.6 mHz and using manometry were 73.8 +/- 7.9 mHz during the baseline (r = 98, p < 0.05). The amplitude of contraction using AMR-ACB was 396 +/- 108 mu T.s and using manometry were 540 +/- 198 mmHg.s during the baseline. The amplitudes of signals for AMR-ACB and manometric recordings were similarly increased to 86.4% and 89.3% by neostigmine, and also decreased to 27.2% and 21.4% by hyoscine butylbromide in all animals, respectively. The AMR-ACB array is nonexpensive, portable, and has high-spatiotemporal resolution to provide helpful information about gastrointestinal tract.