3 resultados para Self-Adjoint Derivation Ranges

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Griffiths proposed a pair of boundary conditions that define a point interaction in one dimensional quantum mechanics. The conditions involve the nth derivative of the wave function where n is a non-negative integer. We re-examine the interaction so defined and explicitly confirm that it is self-adjoint for any even value of n and for n = 1. The interaction is not self-adjoint for odd n > 1. We then propose a similar but different pair of boundary conditions with the nth derivative of the wave function such that the ensuing point interaction is self-adjoint for any value of n.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We construct all self-adjoint Schrodinger and Dirac operators (Hamiltonians) with both the pure Aharonov-Bohm (AB) field and the so-called magnetic-solenoid field (a collinear superposition of the AB field and a constant magnetic field). We perform a spectral analysis for these operators, which includes finding spectra and spectral decompositions, or inversion formulae. In constructing the Hamiltonians and performing their spectral analysis, we follow, respectively, the von Neumann theory of self-adjoint extensions of symmetric operators and the Krein method of guiding functionals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The structure of additional electromagnetic fields to the Aharonov-Bohm field, for which the Schrodinger, Klein-Gordon, and Dirac equations can be solved exactly are described and the corresponding exact solutions are found. It is demonstrated that aside from the known cases (a constant and uniform magnetic field that is parallel to the Aharonov-Bohm solenoid, a static spherically symmetrical electric field, and the field of a magnetic monopole), there are broad classes of additional fields. Among these new additional fields we have physically interesting electric fields acting during a finite time or localized in a restricted region of space. There are additional time-dependent uniform and isotropic electric fields that allow exact solutions of the Schrodinger equation. In the relativistic case there are additional electric fields propagating along the Aharonov-Bohm solenoid with arbitrary electric pulse shape. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4714352]