8 resultados para Sedimentary evolution

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Several publications have contributed to improve the stratigraphy of the Paraíba Basin in northeastern Brazil. However, the characterization and distribution of sedimentary units in onshore areas of this basin are still incomplete, despite their significance for reconstructing the tectono-sedimentary evolution of the South American passive margin. This work provides new information to differentiate among lithologically similar strata, otherwise entirely unrelated in time. This approach included morphological, sedimentological and stratigraphic descriptions based on surface and sub-surface data integrated with remote sensing, optically stimulated luminescence dating, U+Th/He dating of weathered goethite, and heavy mineral analysis. Based on this study, it was possible to show that Cretaceous units are constrained to the eastern part of the onshore Paraíba Basin. Except for a few outcrops of carbonatic rocks nearby the modern coastline, deposits of this age are not exposed to the surface in the study area. Instead, the sedimentary cover throughout the basin is constituted by mineralogically and chronologically distinctive deposits, inserted in the Barreiras Formation and mostly in the Post-Barreiras Sediments, of early/middle Miocene and Late Pleistocene-Holocene ages, respectively. The data presented in this work support tectonic deformation as a factor of great relevance to the distribution of the sedimentary units of the Paraíba Basin.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Four sediment cores were sampled from Lake Arari, located on Marajo Island at the mouth of the Amazon River. The island's vegetation cover is composed mainly of Amazon coastal forest, herbaceous and varzea vegetation. The integration of data on sedimentary structures, pollen, carbon and nitrogen isotope records, C/N ratios and radiocarbon ages allowed the identification of changes in vegetation and the sources of organic matter accumulated in the lake during the Holocene. The data indicate a relatively high flow energy, marine water influence and the presence of mangroves during the lagoon phase between 8990 and 8690 cal yr B.P. and 2310-2230 cal yr B.P. Between 2310 and 2230 cal yr B.P. and similar to 1000 cal yr B.P., the flow energy decreased and the mangroves were replaced by herbaceous vegetation following the decline in marine influence, likely due to the increase in freshwater river discharge. During the last 1000 years, Lake Arari was established in association with the expansion of herbaceous vegetation and the dominance of freshwater algae. (C) 2011 Elsevier BM. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

During the Ediacaran, southern Brazil was the site of multiple episodes of volcanism and sedimentation, which are best preserved in the 3000 km(2) Camaqua Basin. The interlayered sedimentary and volcanic rocks record tectonic events and paleoenvironmental changes in a more than 10 km-thick succession. In this contribution, we report new U-Pb and Sm-Nd geochronological constraints for the 605 to 580 Ma Born Jardim Group, the 570 Ma Acampamento Velho Formation, and a newly-recognized 544 Ma volcanism. Depositional patterns of these units reveal the transition from a restricted, fault-bounded basin into a wide, shallow basin. The expansion of the basin and diminished subsidence rates are demonstrated by increasing areal distribution and compressed isopachs and increasing onlap of sediments onto the basement to the west. The Sm-Nd isotopic composition of the volcanic rocks indicates mixed sources, including crustal rocks from the adjacent basement. Both Neoproterozoic and Paleoproterozoic sources are indicated for the western part of the basin, whereas only the older Paleoproterozoic signature can be discerned in the eastern part of the basin. (C) 2011 International Association for Gondwana Research. Published by Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Amazonian lowlands include large patches of open vegetation which contrast sharply with the rainforest, and the origin of these patches has been debated. This study focuses on a large area of open vegetation in northern Brazil, where d13C and, in some instances, C/N analyses of the organic matter preserved in late Quaternary sediments were used to achieve floristic reconstructions over time. The main goal was to determine when the modern open vegetation started to develop in this area. The variability in d13C data derived from nine cores ranges from -32.2 to -19.6 parts per thousand, but with nearly 60% of data above -26.5 parts per thousand. The most enriched values were detected only in ecotone and open vegetated areas. The development of open vegetation communities was asynchronous, varying between estimated ages of 6400 and 3000 cal a BP. This suggests that the origin of the studied patches of open vegetation might be linked to sedimentary dynamics of a late Quaternary megafan system. As sedimentation ended, this vegetation type became established over the megafan surface. In addition, the data presented here show that the presence of C4 plants must be used carefully as a proxy to interpret dry paleoclimatic episodes in Amazonian areas. Copyright (c) 2012 John Wiley & Sons, Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The basement rock of the Pampean flat-slab (Sierras Pampeanas) in the Central Andes was uplifted and rotated in the Cenozoic era. The Western Sierras Pampeanas are characterised by meta-igneous rocks of Grenvillian Mesoproterozoic age and metasedimentary units metamorphosed in the Ordovician period. These rocks, known as the northern Cuyania composite terrane, were derived from Laurentia and accreted toward Western Gondwana during the Early Paleozoic. The Sierra de Umango is the westernmost range of the Western Sierras Pampeanas.This range is bounded by the Devonian sedimentary rocks of the Precordillera on the western side and Tertiary rocks from the Sierra de Maz and Sierra del Espinal on the eastern side and contains igneous and sedimentary rocks outcroppings from the Famatina System on the far eastern side. The Sierra de Umango evolved during a period of polyphase tectonic activity, including an Ordovician collisional event, a Devonian compressional deformation, Late Paleozoic and Mesozoic extensional faulting and sedimentation (Paganzo and Ischigualasto basins) and compressional deformation of the Andean foreland during the Cenozoic. A Nappe System and an important shear zone, La Puntilla-La Falda Shear Zone (PFSZ), characterise the Ordovician collisional event, which was related to the accretion of Cuyania Terrane to the proto-Andean margin of Gondwana. Three continuous deformational phases are recognised for this event: the D1 phase is distinguished by relics of 51 preserved as internal foliation within interkinematic staurolite por-phyroblasts and likely represents the progressive metamorphic stage; the D2 phase exhibits P-T conditions close to the metamorphic peak that were recorded in an 52 transposition or a mylonitic foliation and determine the main structure of Umango; and the D3 phase is described as a set of tight to recumbent folds with S3 axial plane foliation, often related to thrust faults, indicating the retrogressive metamorphic stage. The Nappe System shows a top-to-the S/SW sense direction of movement, and the PFSZ served as a right lateral ramp in the exhumation process. This structural pattern is indicative of an oblique collision, with the Cuyania Terrane subducting under the proto-Andean margin of Gondwana in the NE direction. This continental subduction and exhumation lasted at least 30 million years, nearly the entire Ordovician period, and produced metamorphic conditions of upper amphibolite-to-granulite facies in medium- to high-pressure regimes. At least two later events deformed the earlier structures: D4 and D5 deformational phases. The D4 deformational phase corresponds to upright folding, with wavelengths of approximately 10 km and a general N-S orientation. These folds modified the S2 surface in an approximately cylindrical manner and are associated with exposed, discrete shear zones in the Silurian Guandacolinos Granite. The cylindrical pattern and subhorizontal axis of the D4 folds indicates that the S2 surface was originally flat-lying. The D4 folds are responsible for preserving the basement unit Juchi Orthogneiss synformal klippen. This deformation corresponds to the Chanica Tectonic during the interval between the Devonian and Carboniferous periods. The D5 deformational phase comprehends cuspate-lobate shaped open plunging folds with E W high-angle axes (D5 folds) and sub-vertical spaced cleavage. The D5 folds and related spaced cleavage deformed the previous structures and could be associated with uplifting during the Andean Cycle. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The diverse Holocene morphological features along the south coast of the state of Santa Catarina include lagoons and residual lakes, a barrier, a delta (constructed by the Tubarao River), and pre-existing incised valleys that have flooded and filled. This scenario contains the sedimentary record of the transition from a bay to a lagoon system, which occurred during the rise and subsequent semi-stabilisation of the relative sea-level during the Holocene. The geomorphological evolution of this area was investigated using a combination of morphology, stratigraphic analysis of rotary push cores, vibracores and trenches with radiocarbon dating, taxonomic determination and taphonomic characterisation of Holocene fossil molluscs. Palaeogeographic maps were constructed to illustrate how the bay evolved over the last 8000 years. The relative sea-level rise and local sedimentary processes were the prime forcing factors determining the depositional history and palaeogeographic changes. The Holocene sedimentary succession began between 8000 and 5700 cal BP with the deposits of transgressive sandsheets. These deposits correspond to the initial marine flooding surface that was formed while the relative sea-level rose at a higher rate than the input of sediments, prior to the formation of the coastal barrier. The change from a bay to a lagoon system occurred around 5700 and 2500 cal BP during the mid-Holocene highstand with the formation of the barrier and with the achievement of a balance between sea-level rise and sedimentary supply. Until 2500 cal BP, the presence of this barrier, the following gentle decline in sea level and the initial emergence of back-barrier features restricted the hydro-dynamic circulation inside the bay and favoured an increase in the Tubarao River delta progradation rate. The final stage, during the last 2500 years, was marked by the increasing back-barrier width, with the establishment of salt marshes, the arrival of the delta in the back-barrier, and the advance of aeolian dunes along the outer lagoon margins. This study shed light on the mechanisms of coastal bay evolution in a setting existed prior to the beginning of barrier lagoon sedimentation. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The OMEX core CD110 W90, retrieved from the Douro Mud Patch (DMP) off the River Douro in the north of Portugal, records the period since the beginning of Little Ice Age (LIA). The core chronology is based upon the data attributes for Pb-210, Cs-137 and a C-14 dating from a level near the core base. Geochemical, granulometric, microfaunal (benthic foraminifera) and compositional data suggest the occurrence of precipitation changes which may have been, at least partially, influenced by the North Atlantic Oscillation (NAO), that contributes to the regulation of the ocean-atmosphere dynamics in the North Atlantic. Southwesterly Atlantic storm track is associated with the negative phases of the NAO, when the Azores High is anomalously weak, higher oceanographic hydrodynamism, downwelling events and increased rainfall generally occurs. Prevalence of these characteristics during the LIA left a record that corresponds to phases of major floods. During these phases the DMP received a higher contribution of relatively coarse-grained terrigenous sediments, enriched in quartz particles, which diluted the contribution of other minerals, as indicated by reduced concentrations of several lithogenic chemical elements such as: Al, As, Ba, Ce, Co, Cu, Fe, K, La, Li, Mg, Mn, Mo, Na, Ni, P, Rb, Sc, Sn, Th, V and Y. The presence of biogenic carbonate particles also underwent dilution, as revealed by the smaller abundance of foraminifera and correlative lower concentrations of Ca and Sr. During this period, the DMP also received an increased contribution of organic matter, indicated by higher values of lignin remains and a benthic foraminifera high productivity index, or BFHP, which gave rise to early diagenetic changes with pyrite formation. Since the beginning of the 20th century this contribution diminished, probably due to several drier periods and the impact of human activities in the river basins, e.g. construction of dams, or, on the littoral areas, construction of hard-engineering structures and sand extraction activities. During the first half of the 20th century mainly positive phases of the NAO prevailed, caused by the above normal strengthening of the subtropical high pressure centre of the Azores and the deepening of the low pressure centre in Iceland. These phases may have contributed to the reduction in the supply of both terrigenous sediments and organic matter from shallow water to the DMP. During the positive phases of the NAO, sedimentation became finer. The development of mining and industrial activities during the 20th century is marked, in this core, by higher concentrations of Pb. Furthermore, the erosion of heaps resulting from wolfram exploitation leaves its signature as a peak of W concentrations recorded in the sediments of the DMP deposited between the 1960s and the 1990s. Wolfram exploitation was an important activity in the middle part of the 20th century, particularly during the period of the Second World War. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Neoproterozoic geologic and geotectonic processes were of utmost importance in forming and structuring the basement framework of the South-American platform. Two large domains with distinct evolutionary histories are identified with respect to the Neoproterozoic era: the northwest-west (Amazonian craton and surroundings) and the central-southeast (the extra-Amazonian domain). In the first domain, Neoproterozoic events occurred only locally and were of secondary significance, and the geologic events, processes, and structures of the pre-Neoproterozoic (and syn-Brasiliano) cratonic block were much more influential. In the second, the extra-Amazonian domain, the final evolution, structures and forms are assigned to events related to the development of a complex net of Neoproterozoic mobile belts. These in turn resulted in strong reworking of the older pre-Neoproterozoic basement. In this domain, four distinct structural provinces circumscribe or are separated by relatively small pre- Neoproterozoic cratonic nuclei, namely the Pampean, Tocantins, Borborema and Mantiqueira provinces. These extra-Amazonian provinces were formed by a complex framework of orogenic branching systems following a diversified post-Mesoproterozoic paleogeographic scenario. This scenario included many types of basement inliers as well as a diversified organization of accretionary and collisional orogens. The basement inliers date from the Archean toMesoproterozoic periods and are different in nature. The escape tectonics that operated during the final consolidation stages of the provinces were important to and responsible for the final forms currently observed. These latest events, which occurred from the Late Ediacaran to the Early Ordovician, present serious obstacles to paleogeographic reconstructions. Two groups of orogenic collage systems are identified. The older system from the Tonian (>850 Ma) period is of restricted occurrence and is not fully understood due to strong reworking subsequent to Tonian times. The second group of orogenies is more extensive and more important. Its development began with diachronic taphrogenic processes in the Early Cryogenian period (ca. 850e750 Ma) and preceded a complex scenario of continental, transitional and oceanic basins. Subsequent orogenies (post 800 Ma) were also created by diachronic processes that ended in the Early Ordovician. More than one orogeny (plate interaction) can be identified either in space or in time in every province. The orogenic processes were not necessarily synchronous in different parts of the orogenic system, even within the same province. This particular group of orogenic collage events is known as the “Brasiliano”. All of the structural provinces of the extra-Amazonian domain exhibit final events that are marked by extrusion processes, are represented by long lineaments, and are fundamental to unraveling the structural history of the Phanerozoic sedimentary basins.