12 resultados para Secondary forest

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Litterfall and litter decomposition are vital processes in tropical forests because they regulate nutrient cycling. Nutrient cycling can be altered by forest fragmentation. The Atlantic Forest is one of the most threatened biomes in the world due to human occupation over the last 500 years. This scenario has resulted in fragments of different size, age and regeneration phase. To investigate differences in litterfall and leaf decomposition between forest successional phases, we compared six forest fragments at three different successional phases and an area of mature forest on the Atlantic Plateau of Sao Paulo, Brazil. We sampled litter monthly from November 2008 to October 2009. We used litterbags to calculate leaf decomposition rate of an exotic species, Tipuana tipu (Fabaceae), over the same period litter sampling was performed. Litterfall was higher in the earliest successional area. This pattern may be related to the structural properties of the forest fragments, especially the higher abundance of pioneer species, which have higher productivity and are typical of early successional areas. However, we have not found significant differences in the decomposition rates between the studied areas, which may be caused by rapid stabilization of the decomposition environment (combined effect of microclimatic conditions and the decomposers activities). This result indicates that the leaf decomposition process have already been restored to levels observed in mature forests after a few decades of regeneration, although litterfall has not been entirely restored. This study emphasizes the importance of secondary forests for restoration of ecosystem processes on a regional scale.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Tropical forests are experiencing an increase in the proportion of secondary forests as a result of the balance between the widespread harvesting of old-growth forests and the regeneration in abandoned areas. The impacts of such a process on biodiversity are poorly known and intensely debated. Recent reviews and multi-taxa studies indicate that species replacement in wildlife assemblages is a consistent pattern, sometimes stronger than changes in diversity, with a replacement from habitat generalists to old-growth specialists being commonly observed during tropical forest regeneration. However, the ecological drivers of such compositional changes are rarely investigated, despite its importance in assessing the conservation value of secondary forests, and to support and guide management techniques for restoration. By sampling 28 sites in a continuous Atlantic forest area in Southeastern Brazil, we assessed how important aspects of habitat structure and food resources for wildlife change across successional stages, and point out hypotheses on the implications of these changes for wildlife recovery. Old-growth areas presented a more complex structure at ground level (deeper leaf litter, and higher woody debris volume) and higher fruit availability from an understorey palm, whereas vegetation connectivity, ground-dwelling arthropod biomass, and total fruit availability were higher in earlier successional stages. From these results we hypothetize that generalist species adapted to fast population growth in resource-rich environments should proliferate and dominate earlier successional stages, while species with higher competitive ability in resource-limited environments, or those that depend on resources such as palm fruits, on higher complexity at the ground level, or on open space for flying, should dominate older-growth forests. Since the identification of the drivers of wildlife recovery is crucial for restoration strategies, it is important that future work test and further develop the proposed hypotheses. We also found structural and functional differences between old-growth forests and secondary forests with more than 80 years of regeneration, suggesting that restoration strategies may be crucial to recover structural and functional aspects expected to be important for wildlife in much altered ecosystems, such as the Brazilian Atlantic forest. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The Atlantic Forest is one of the most threatened tropical biomes, with much of the standing forest in small (less than 50 ha), disturbed and isolated patches. The pattern of land-use and land-cover change (LULCC) which has resulted in this critical scenario has not yet been fully investigated. Here, we describe the LULCC in three Atlantic Forest fragmented landscapes (Sao Paulo, Brazil) between 1960-1980s and 1980-2000s. The three studied landscapes differ in the current proportion of forest cover, having 10%, 30% and 50% respectively. Between the 1960s and 1980s. forest cover of two landscapes was reduced while the forest cover in the third landscape increased slightly. The opposite trend was observed between the 1980s and 2000s: forest regeneration was greater than deforestation at the landscapes with 10% and 50% of forest cover and, as a consequence, forest cover increased. By contrast, the percentage of forest cover at the landscape with 30% of forest cover was drastically reduced between the 1980s and 2000s. LULCC deviated from a random trajectory, were not constant through time in two study landscapes and were not constant across space in a given time period. This landscape dynamism in single locations over small temporal scales is a key factor to be considered in models of LULCC to accurately simulate future changes for the Atlantic Forest. In general, forest patches became more isolated when deforestation was greater than forest regeneration and became more connected when forest regeneration was greater than deforestation. As a result of the dynamic experienced by the study landscapes, individual forest patches currently consist of a mosaic of different forest age classes which is likely to impact bio-diversity. Furthermore, landscape dynamics suggests the beginning of a forest transition in some Atlantic Forest regions, what could be of great importance for biodiversity conservation due to the potential effects of young secondary forests in reducing forest isolation and maintaining a significant amount of the original biodiversity. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Communities in fragmented landscapes are often assumed to be structured by species extinction due to habitat loss, which has led to extensive use of the species-area relationship (SAR) in fragmentation studies. However, the use of the SAR presupposes that habitat loss leads species to extinction but does not allow for extinction to be offset by colonization of disturbed-habitat specialists. Moreover, the use of SAR assumes that species richness is a good proxy of community changes in fragmented landscapes. Here, we assessed how communities dwelling in fragmented landscapes are influenced by habitat loss at multiple scales; then we estimated the ability of models ruled by SAR and by species turnover in successfully predicting changes in community composition, and asked whether species richness is indeed an informative community metric. To address these issues, we used a data set consisting of 140 bird species sampled in 65 patches, from six landscapes with different proportions of forest cover in the Atlantic Forest of Brazil. We compared empirical patterns against simulations of over 8 million communities structured by different magnitudes of the power-law SAR and with species-specific rules to assign species to sites. Empirical results showed that, while bird community composition was strongly influenced by habitat loss at the patch and landscape scale, species richness remained largely unaffected. Modeling results revealed that the compositional changes observed in the Atlantic Forest bird metacommunity were only matched by models with either unrealistic magnitudes of the SAR or by models ruled by species turnover, akin to what would be observed along natural gradients. We show that, in the presence of such compositional turnover, species richness is poorly correlated with species extinction, and z values of the SAR strongly underestimate the effects of habitat loss. We suggest that the observed compositional changes are driven by each species reaching its individual extinction threshold: either a threshold of forest cover for species that disappear with habitat loss, or of matrix cover for species that benefit from habitat loss.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The objective of this work was to evaluate the catabolic gene diversity for the bacterial degradation of aromatic hydrocarbons in anthropogenic dark earth of Amazonia (ADE) and their biochar (BC). Functional diversity analyses in ADE soils can provide information on how adaptive microorganisms may influence the fertility of soils and what is their involvement in biogeochemical cycles. For this, clone libraries containing the gene encoding for the alpha subunit of aromatic ring-hydroxylating dioxygenases (alpha-A RH D bacterial gene) were constructed, totaling 800 clones. These libraries were prepared from samples of an ADE soil under two different land uses, located at the Caldeirao Experimental Station secondary forest (SF) and agriculture (AG)-, and the biochar (SF_BC and AG_BC, respectively). Heterogeneity estimates indicated greater diversity in BC libraries; and Venn diagrams showed more unique operational protein clusters (OPC) in the SF_BC library than the ADE soil, which indicates that specific metabolic processes may occur in biochar. Phylogenetic analysis showed unidentified dioxygenases in ADE soils. Libraries containing functional gene encoding for the alpha subunit of the aromatic ring-hydroxylating dioxygenases (ARHD) gene from biochar show higher diversity indices than those of ADE under secondary forest and agriculture.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this study alpha and beta diversity patterns of five leaf litter arthropod groups (ants, predatory ants, oribatid mites, spiders and other arachnids) were described and compared in 39 sampling patches of a transformed landscape in southwestern Colombia, that represented five vegetation types: secondary forest, riparian forest, giant bamboo forest, pasture and sugarcane crop. It was also assessed whether some taxa could be used as diversity surrogates. A total of 6,765 individuals grouped in 290 morphospecies were collected. Species richness in all groups was lower in highly transformed vegetation types (pasture, sugarcane crop) than in native ones (forests). In contrast, there were no clear tendencies of beta diversity among vegetation types. Considering sampling patches, 0.1-42% of the variation in alpha diversity of one taxonomic group could be explained from the alpha diversity of another, and 0.2-33% of the variation of beta diversity of a given taxon was explained by that in other groups. Contrary to recent findings, we concluded that patterns of alpha diversity are more congruent than patterns of beta diversity. This fact could be attributed to a sampling effect that promotes congruence in alpha diversity and to a lack of a clear regional ecological gradient that could promote congruent patterns of beta diversity. We did not find evidence for an ideal diversity surrogate although diversity patterns of predatory ants had the greatest congruencies. These results support earlier multi-taxon evaluations in that conservation planning should not be based on only one leaf litter arthropod group.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aboveground tropical tree biomass and carbon storage estimates commonly ignore tree height (H). We estimate the effect of incorporating H on tropics-wide forest biomass estimates in 327 plots across four continents using 42 656 H and diameter measurements and harvested trees from 20 sites to answer the following questions: 1. What is the best H-model form and geographic unit to include in biomass models to minimise site-level uncertainty in estimates of destructive biomass? 2. To what extent does including H estimates derived in (1) reduce uncertainty in biomass estimates across all 327 plots? 3. What effect does accounting for H have on plot- and continental-scale forest biomass estimates? The mean relative error in biomass estimates of destructively harvested trees when including H (mean 0.06), was half that when excluding H (mean 0.13). Power- and Weibull-H models provided the greatest reduction in uncertainty, with regional Weibull-H models preferred because they reduce uncertainty in smaller-diameter classes (< 40 cm D) that store about one-third of biomass per hectare in most forests. Propagating the relationships from destructively harvested tree biomass to each of the 327 plots from across the tropics shows that including H reduces errors from 41.8 Mg ha(-1) (range 6.6 to 112.4) to 8.0 Mg ha(-1) (-2.5 to 23.0).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Various factors affect spatial genetic structure in plant populations, including adult density and primary and secondary seed dispersal mechanisms. We evaluated pollen and seed dispersal distances and spatial genetic structure of Carapa guianensis Aublet. (Meliaceae) in occasionally inundated and terra firme forest environments that differed in tree densities and secondary seed dispersal agents. We used parentage analysis to obtain contemporary gene flow estimates and assessed the spatial genetic structure of adults and juveniles. Despite the higher density of adults (diameter at breast height >= 25 cm) and spatial aggregation in occasionally inundated forest, the average pollen dispersal distance was similar in both types of forest (195 +/- 106 m in terra firme and 175 +/- 87 m in occasionally inundated plots). Higher seed flow rates (36.7% of juveniles were from outside the plot) and distances (155 +/- 84 m) were found in terra firme compared to the occasionally inundated plot (25.4% and 114 +/- 69 m). There was a weak spatial genetic structure in juveniles and in terra firme adults. These results indicate that inundation may not have had a significant role in seed dispersal in the occasionally inundated plot, probably because of the higher levels of seedling mortality.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The fine particles serving as cloud condensation nuclei in pristine Amazonian rainforest air consist mostly of secondary organic aerosol. Their origin is enigmatic, however, because new particle formation in the atmosphere is not observed. Here, we show that the growth of organic aerosol particles can be initiated by potassium-salt-rich particles emitted by biota in the rainforest. These particles act as seeds for the condensation of low- or semi-volatile organic compounds from the atmospheric gas phase or multiphase oxidation of isoprene and terpenes. Our findings suggest that the primary emission of biogenic salt particles directly influences the number concentration of cloud condensation nuclei and affects the microphysics of cloud formation and precipitation over the rainforest.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work it was hypothesized that secondary succession on sites that have been managed by single planting of mangrove species is compromised by residual stressors, which could reduce the ecosystem's structural development and lower its functions. Forest structure and environmental characteristics of three planted mangrove stands are compared with reference sites. Structural attributes showed significant differences in the comparison of planted and reference stands. Avicennia schaueriana was the dominant species within both natural regeneration and old-growth stands in terms of basal area (99.2 and 99.4 %, 69.6 and 84.5 %, and 59.0 and 87.1 % for Itacorubi, Saco Grande, and Ratones, respectively). Restoration stands were dominated by Laguncularia racemosa (80.6 and 94.2 % for Saco Grande and Ratones, respectively), except at one site (Itacorubi), where A. schaueriana prevailed (99.7 %). Even though restoration and regeneration stands at Itacorubi showed similar species composition and dominance, cohort sorting revealed an inferior regeneration potential in the restoration stand. Multiple correlation analysis indicated that variables related to elevation disruptions (p (w) = 0.521) were the environmental drivers responsible for the differences observed in forest structure. At restoration sites an impaired pattern of secondary succession was observed, indicating that single species plantings may be ineffective if characteristics of the site, as well as of the area surrounding it, are not considered. The inadequate management of restoration sites can therefore have implications for both immediate and long-term large-scale ecosystem services.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract Background A descriptive study was carried out in an area of the Atlantic Forest with autochthonous malaria in the Parelheiros subdistrict on the periphery of the municipality of São Paulo to identify anopheline fauna and anophelines naturally infected with Plasmodium as well as to discuss their role in this peculiar epidemiological context. Methods Entomological captures were made from May 2009 to April 2011 using Shannon traps and automatic CDC traps in four areas chosen for their different patterns of human presence and incidences of malaria (anthropic zone 1, anthropic zone 2, transition zone and sylvatic zone). Natural Plasmodium infection was detected by nested PCR based on amplification of the 18S rRNA gene. Results In total, 6,073 anophelines were collected from May 2009 to April 2011, and six species were identified in the four zones. Anopheles cruzii was the predominant species in the three environments but was more abundant in the sylvatic zone. Anopheles (Kerteszia) cruzii specimens from the anthropic and sylvatic zones were positive for P. vivax and P. malariae. An. (Ker.) bellator, An. (Nys.) triannulatus, An. (Nys.) strodei, An. (Nys.) lutzi and An. (Ano) maculipes were found in small numbers. Of these, An. (Nys.) triannulatus and An. (Nys.) lutzi, which were collected in the anthropic zone, were naturally infected with P. vivax while An. (Nys.) triannulatus from the anthropic zones and An. (Nys.) strodei from the transition zone were positive for P. malariae. Conclusion These results confirm that Anopheles (Kerteszia) cruzii plays an important role as a major Plasmodium vector. However, the finding of other naturally infected species may indicate that secondary vectors are also involved in the transmission of malaria in the study areas. These findings can be expected to help in the implementation of new measures to control autochthonous malaria in areas of the Atlantic Forest.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study aimed to map phytophysiognomies of an area of Ombrophilous Dense Forest at Parque Estadual da Serra do Mar and characterize their floristic composition. Photointerpretation of aerial photographs in scale of 1:35,000 was realized in association with field work. Thirteen physiognomies were mapped and they were classified as Montane Ombrophilous Dense Forest, Alluvial Ombrophilous Dense Forest or Secondary System. Three physiognomies identified at Casa de Pedra streamlet's basin were studied with more details. Riparian forest (RF), valley forest (VF), and hill forest (HF) presented some floristic distinction, as confirmed by Detrended Correspondence Analysis (DCA) and Indicator Species Analysis (ISA) conducted here. Anthropic or natural disturbances and heterogeneity of environmental conditions may be the causes of physiognomic variation in the vegetation of the region. The results presented here may be useful to decisions related to management and conservation of Núcleo Santa Virgínia forests, in general.