3 resultados para Seasons.

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present the results of airborne measurements of carbon monoxide (CO) and aerosol particle number concentration (CN) made during the Balan double dagger o Atmosf,rico Regional de Carbono na Amazonia (BARCA) program. The primary goal of BARCA is to address the question of basin-scale sources and sinks of CO2 and other atmospheric carbon species, a central issue of the Large-scale Biosphere-Atmosphere (LBA) program. The experiment consisted of two aircraft campaigns during November-December 2008 (BARCA-A) and May-June 2009 (BARCA-B), which covered the altitude range from the surface up to about 4500 m, and spanned most of the Amazon Basin. Based on meteorological analysis and measurements of the tracer, SF6, we found that airmasses over the Amazon Basin during the late dry season (BARCA-A, November 2008) originated predominantly from the Southern Hemisphere, while during the late wet season (BARCA-B, May 2009) low-level airmasses were dominated by northern-hemispheric inflow and mid-tropospheric airmasses were of mixed origin. In BARCA-A we found strong influence of biomass burning emissions on the composition of the atmosphere over much of the Amazon Basin, with CO enhancements up to 300 ppb and CN concentrations approaching 10 000 cm(-3); the highest values were in the southern part of the Basin at altitudes of 1-3 km. The Delta CN/Delta CO ratios were diagnostic for biomass burning emissions, and were lower in aged than in fresh smoke. Fresh emissions indicated CO/CO2 and CN/CO emission ratios in good agreement with previous work, but our results also highlight the need to consider the residual smoldering combustion that takes place after the active flaming phase of deforestation fires. During the late wet season, in contrast, there was little evidence for a significant presence of biomass smoke. Low CN concentrations (300-500 cm(-3)) prevailed basinwide, and CO mixing ratios were enhanced by only similar to 10 ppb above the mixing line between Northern and Southern Hemisphere air. There was no detectable trend in CO with distance from the coast, but there was a small enhancement of CO in the boundary layer suggesting diffuse biogenic sources from photochemical degradation of biogenic volatile organic compounds or direct biological emission. Simulations of CO distributions during BARCA-A using a range of models yielded general agreement in spatial distribution and confirm the important contribution from biomass burning emissions, but the models evidence some systematic quantitative differences compared to observed CO concentrations. These mismatches appear to be related to problems with the accuracy of the global background fields, the role of vertical transport and biomass smoke injection height, the choice of model resolution, and reliability and temporal resolution of the emissions data base.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The herbicides glyphosate and paraquat have been used by Brazilian soybean producers to obtain crop desiccation and to anticipate and uniformity at harvest. However, improper use of herbicides can to occasion problems in agronomic and physiologic characteristics of crop. This study aimed to evaluate the use of the glyphosate and paraquat herbicides as a desiccant for growing soybeans. The experiment was conducted in 2005/06 crop year, in an experimental design of randomized blocks with four replications. Treatments were arranged in two factorial design, 3x3x5x2 and 3x2x5x2: two desiccants (glyphosate and paraquat) and control (without drying), three and two growth stages (R6, R7 and R8) and (R7 and R8) for varieties MSOY 6101 of superprecocious cycle, and MG / BR 46 (Conquista) of precocious cycle, respectively, five sampling times (2, 4, 6, 8 and 10 days after application) and two positions in the plants on the ground assessment (apex and base). Was evaluated for seed Production, mass and water content of 100 seeds. Desiccants tested were effective in reducing the water content of seeds, without affecting productivity and mass of 100 seeds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plant growth and development are proportional to biological time, or the thermal time of the species, which can be defined as the integral of the temperature over time between the lower and upper temperature developmental thresholds. The objective of this study was to investigate the efficiency of the growing degree-day (GDD) approach for vines of the 'Niagara Rosada' cultivar pruned in winter and summer seasons, and physiological phases (mobilisation and reserve accumulation) in a humid subtropical region. The experiment was carried out on 13-year-old plants in Piracicaba, So Paulo State-Brazil, evaluating 24 production cycles, 12 from the winter pruning, and 12 from the summer pruning. The statistical design was comprised of randomised blocks, using the pruning dates as treatment: 20 July, 4 August, 19 August, and 3 September (winter); 1 February, 15 February, 2 March, and 16 March (summer). Comparison of the mean values of GDD among pruning dates was evaluated by the Tukey test, and comparison between pruning seasons was made by the F test for orthogonal contrasts, both at the 5% probability level. The results showed good agreement between the values of GDD required to complete the cycle from the winter pruning until harvest when compared with other studies performed with the same cultivar grown in the Southern and Southeastern regions of Brazil. However, there was a consistent statistical difference between GDD computed for winter and summer pruning, which allowed us to conclude that this bio-meteorological index is not sufficient to distinguish vines pruned in different seasons and physiological phases applied in humid subtropical climates.