3 resultados para Science maps

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We review symplectic nontwist maps that we have introduced to describe Lagrangian transport properties in magnetically confined plasmas in tokamaks. These nontwist maps are suitable to describe the formation and destruction of transport barriers in the shearless region (i.e., near the curve where the twist condition does not hold). The maps can be used to investigate two kinds of problems in plasmas with non-monotonic field profiles: the first is the chaotic magnetic field line transport in plasmas with external resonant perturbations. The second problem is the chaotic particle drift motion caused by electrostatic drift waves. The presented analytical maps, derived from plasma models with equilibrium field profiles and control parameters that are commonly measured in plasma discharges, can be used to investigate long-term transport properties. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Robust analysis of vector fields has been established as an important tool for deriving insights from the complex systems these fields model. Traditional analysis and visualization techniques rely primarily on computing streamlines through numerical integration. The inherent numerical errors of such approaches are usually ignored, leading to inconsistencies that cause unreliable visualizations and can ultimately prevent in-depth analysis. We propose a new representation for vector fields on surfaces that replaces numerical integration through triangles with maps from the triangle boundaries to themselves. This representation, called edge maps, permits a concise description of flow behaviors and is equivalent to computing all possible streamlines at a user defined error threshold. Independent of this error streamlines computed using edge maps are guaranteed to be consistent up to floating point precision, enabling the stable extraction of features such as the topological skeleton. Furthermore, our representation explicitly stores spatial and temporal errors which we use to produce more informative visualizations. This work describes the construction of edge maps, the error quantification, and a refinement procedure to adhere to a user defined error bound. Finally, we introduce new visualizations using the additional information provided by edge maps to indicate the uncertainty involved in computing streamlines and topological structures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study the coincidence theory of maps between two manifolds of the same dimension from an axiomatic viewpoint. First we look at coincidences of maps between manifolds where one of the maps is orientation true, and give a set of axioms such that characterizes the local index (which is an integer valued function). Then we consider coincidence theory for arbitrary pairs of maps between two manifolds. Similarly we provide a set of axioms which characterize the local index, which in this case is a function with values in Z circle plus Z(2). We also show in each setting that the group of values for the index (either Z or Z circle plus Z(2)) is determined by the axioms. Finally, for the general case of coincidence theory for arbitrary pairs of maps between two manifolds we provide a set of axioms which characterize the local Reidemeister trace which is an element of an abelian group which depends on the pair of functions. These results extend known results for coincidences between orientable differentiable manifolds. (C) 2012 Elsevier B.V. All rights reserved.