7 resultados para Scheffersomyces stipitis

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background: This study is the first to investigate the Brazilian Amazonian Forest to identify new D-xylose-fermenting yeasts that might potentially be used in the production of ethanol from sugarcane bagasse hemicellulosic hydrolysates. Methodology/Principal Findings: A total of 224 yeast strains were isolated from rotting wood samples collected in two Amazonian forest reserve sites. These samples were cultured in yeast nitrogen base (YNB)-D-xylose or YNB-xylan media. Candida tropicalis, Asterotremella humicola, Candida boidinii and Debaryomyces hansenii were the most frequently isolated yeasts. Among D-xylose-fermenting yeasts, six strains of Spathaspora passalidarum, two of Scheffersomyces stipitis, and representatives of five new species were identified. The new species included Candida amazonensis of the Scheffersomyces clade and Spathaspora sp. 1, Spathaspora sp. 2, Spathaspora sp. 3, and Candida sp. 1 of the Spathaspora clade. In fermentation assays using D-xylose (50 g/L) culture medium, S. passalidarum strains showed the highest ethanol yields (0.31 g/g to 0.37 g/g) and productivities (0.62 g/L.h to 0.75 g/L.h). Candida amazonensis exhibited a virtually complete D-xylose consumption and the highest xylitol yields (0.55 g/g to 0.59 g/g), with concentrations up to 25.2 g/L. The new Spathaspora species produced ethanol and/or xylitol in different concentrations as the main fermentation products. In sugarcane bagasse hemicellulosic fermentation assays, S. stipitis UFMG-XMD-15.2 generated the highest ethanol yield (0.34 g/g) and productivity (0.2 g/L.h), while the new species Spathaspora sp. 1 UFMG-XMD-16.2 and Spathaspora sp. 2 UFMG-XMD-23.2 were very good xylitol producers. Conclusions/Significance: This study demonstrates the promise of using new D-xylose-fermenting yeast strains from the Brazilian Amazonian Forest for ethanol or xylitol production from sugarcane bagasse hemicellulosic hydrolysates.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Abstract Background Fuel ethanol production from sustainable and largely abundant agro-residues such as sugarcane bagasse (SB) provides long term, geopolitical and strategic benefits. Pretreatment of SB is an inevitable process for improved saccharification of cell wall carbohydrates. Recently, ammonium hydroxide-based pretreatment technologies have gained significance as an effective and economical pretreatment strategy. We hypothesized that soaking in concentrated aqueous ammonia-mediated thermochemical pretreatment (SCAA) would overcome the native recalcitrance of SB by enhancing cellulase accessibility of the embedded holocellulosic microfibrils. Results In this study, we designed an experiment considering response surface methodology (Taguchi method, L8 orthogonal array) to optimize sugar recovery from ammonia pretreated sugarcane bagasse (SB) by using the method of soaking in concentrated aqueous ammonia (SCAA-SB). Three independent variables: ammonia concentration, temperature and time, were selected at two levels with center point. The ammonia pretreated bagasse (SCAA-SB) was enzymatically hydrolysed by commercial enzymes (Celluclast 1.5 L and Novozym 188) using 15 FPU/g dry biomass and 17.5 Units of β-glucosidase/g dry biomass at 50°C, 150 rpm for 96 h. A maximum of 28.43 g/l reducing sugars corresponding to 0.57 g sugars/g pretreated bagasse was obtained from the SCAA-SB derived using a 20% v/v ammonia solution, at 70°C for 24 h after enzymatic hydrolysis. Among the tested parameters, pretreatment time showed the maximum influence (p value, 0.053282) while ammonia concentration showed the least influence (p value, 0.612552) on sugar recovery. The changes in the ultra-structure and crystallinity of native SCAA-SB and enzymatically hydrolysed SB were observed by scanning electron microscopy (SEM), x-ray diffraction (XRD) and solid-state 13C nuclear magnetic resonance (NMR) spectroscopy. The enzymatic hydrolysates and solid SCAA-SB were subjected to ethanol fermentation under separate hydrolysis and fermentation (SHF) and simultaneous saccharification and fermentation (SSF) by Scheffersomyces (Pichia) stipitis NRRL Y-7124 respectively. Higher ethanol production (10.31 g/l and yield, 0.387 g/g) was obtained through SSF than SHF (3.83 g/l and yield, 0.289 g/g). Conclusions SCAA treatment showed marked lignin removal from SB thus improving the accessibility of cellulases towards holocellulose substrate as evidenced by efficient sugar release. The ultrastructure of SB after SCAA and enzymatic hydrolysis of holocellulose provided insights of the degradation process at the molecular level.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oat hull hemicellulosic hydrolysate obtained by diluted acid hydrolysis was employed as fermentation medium for Pichia stipitis cultivation. A comparison between the use of treated hydrolysate with 1% activated charcoal to reduce the toxic compounds generated during the hydrolysis process and untreated hydrolysate as a control was conducted. In the cultures using treated hydrolysate the total consumption of glucose, low xylose consumption and ethanol and glycerol formation were observed. The medium formulated with untreated hydrolysate showed morphological cell modifications with consequently cell death, no ethanol formation and formation of glycerol as byproduct of fermentative process, probably as a response to stressful conditions to yeast due to presence of high concentration of toxic compounds. Thus, further studies are suggested in order to determine the best conditions for hydrolysis and detoxification of the hydrolysate to improve the fermentative performance of P. stipitis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The xylose conversion to ethanol by Pichia stipitis was studied. In a first step, the necessity of supplementing the fermentation medium with urea. MgSO(4) x 7H(2)O, and/or yeast extract was evaluated through a 2(3) full factorial design. The simultaneous addition of these three nutritional sources to the fermentation medium, in concentrations of 2.3, 1.0, and 3.0 g/l, respectively, showed to be important to improve the ethanol production in detriment of the substrate conversion to cell. In a second stage, fermentation assays performed in a bioreactor under different K(L)a (volumetric oxygen transfer coefficient) conditions made possible understanding the influence of the oxygen transfer on yeast performance, as well as to define the most suitable range of values for an efficient ethanol production. The most promising region to perform this bioconversion process was found to be between 2.3 and 4.9 h(-1), since it promoted the highest ethanol production results with practically exhaustion of the xylose from the medium. These findings contribute for the development of an economical and efficient technology for large scale production of second generation ethanol. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oat hull hemicellulosic hydrolysate obtained by diluted acid hydrolysis was employed as fermentation medium for Pichia stipitis cultivation. A comparison between the use of treated hydrolysate with 1% activated charcoal to reduce the toxic compounds generated during the hydrolysis process and untreated hydrolysate as a control was conducted. In the cultures using treated hydrolysate the total consumption of glucose, low xylose consumption and ethanol and glycerol formation were observed. The medium formulated with untreated hydrolysate showed morphological cell modifications with consequently cell death, no ethanol formation and formation of glycerol as byproduct of fermentative process, probably as a response to stressful conditions to yeast due to presence of high concentration of toxic compounds. Thus, further studies are suggested in order to determine the best conditions for hydrolysis and detoxification of the hydrolysate to improve the fermentative performance of P. stipitis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Significant amounts of wastes are generated by the coffee industry, among of which, coffee silverskin (CS) and spent coffee grounds (SCG) are the most abundantly generated during the beans roasting and instant coffee preparation, respectively. This study evaluated the sugars metabolism and production of ethanol by three different yeast strains (Saccharomyces cerevisiae, Pichia stipitis and Kluyveromyces fragilis) when cultivated in sugar rich hydrolysates produced by acid hydrolysis of CS and SCG. S. cerevisiae provided the best ethanol production from SCG hydrolysate (11.7 g/l, 50.2% efficiency). On the other hand, insignificant (<= 1.0 g/l) ethanol production was obtained from CS hydrolysate, for all the evaluated yeast strains, probably due to the low sugars concentration present in this medium (approx. 22 g/l). It was concluded that it is possible to reuse SCG as raw material for ethanol production, which is of great interest for the production of this biofuel, as well as to add value to this agro-industrial waste. CS hydrolysate, in the way that is produced, was not a suitable fermentation medium for ethanol production; however, the hydrolysate concentration for the sugars content increase previous the use as fermentation medium could be an alternative to overcome this problem. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abstract Background The use of lignocellulosic constituents in biotechnological processes requires a selective separation of the main fractions (cellulose, hemicellulose and lignin). During diluted acid hydrolysis for hemicellulose extraction, several toxic compounds are formed by the degradation of sugars and lignin, which have ability to inhibit microbial metabolism. Thus, the use of a detoxification step represents an important aspect to be considered for the improvement of fermentation processes from hydrolysates. In this paper, we evaluated the application of Advanced Oxidative Processes (AOPs) for the detoxification of rice straw hemicellulosic hydrolysate with the goal of improving ethanol bioproduction by Pichia stipitis yeast. Aiming to reduce the toxicity of the hemicellulosic hydrolysate, different treatment conditions were analyzed. The treatments were carried out according to a Taguchi L16 orthogonal array to evaluate the influence of Fe+2, H2O2, UV, O3 and pH on the concentration of aromatic compounds and the fermentative process. Results The results showed that the AOPs were able to remove aromatic compounds (furan and phenolic compounds derived from lignin) without affecting the sugar concentration in the hydrolysate. Ozonation in alkaline medium (pH 8) in the presence of H2O2 (treatment A3) or UV radiation (treatment A5) were the most effective for hydrolysate detoxification and had a positive effect on increasing the yeast fermentability of rice straw hemicellulose hydrolysate. Under these conditions, the higher removal of total phenols (above 40%), low molecular weight phenolic compounds (above 95%) and furans (above 52%) were observed. In addition, the ethanol volumetric productivity by P. stipitis was increased in approximately twice in relation the untreated hydrolysate. Conclusion These results demonstrate that AOPs are a promising methods to reduce toxicity and improve the fermentability of lignocellulosic hydrolysates.