5 resultados para Scalp
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Objectives: The majority of individuals who survive a stroke are disabled because of persisting neurological impairments. The objective of this study was to evaluate the efficacy of subcutaneous electrical stimulation of the scalp in spontaneous functional recovery of patients with chronic ischemic stroke, by evaluating clinical, neurological, and functional findings. Subjects and methods: Sixty-two (62) subjects who were at least 18 months postdiagnosis of ischemic stroke were randomized to receive 10 sessions of placebo or active low-frequency electrical stimulation (2/100 Hz) using subcutaneous acupuncture needles over the scalp. Functional and neurological evaluations were indexed by the Barthel, Rankin, and National Institutes of Health Stroke Scale (NIHSS). Results: Results show that there was a significant difference in functional improvement between the sham and active group as indexed by NIHSS scale. The active group had a larger functional improvement after 10 sessions of scalp electrical acupuncture. The other two functional scales (Rankin and Barthel) failed to show significant differences between the two treatment groups. Conclusions: These results support further testing of scalp electrical acupuncture for the treatment of stroke as well further mechanistic studies to understand mechanisms associated with the observed improvement. Further studies need to consider longer follow-up assessments to investigate potential functional changes associated with electrical acupuncture.
Resumo:
Transient visual evoked cortical potentials (VECP) were recorded from the scalp of healthy normal trichromats (n = 12). VECPs were elicited by onset/offset presentation of patterned stimuli of two kinds: isochromatic luminance-modulated, and equiluminant red-green modulated, sine wave gratings. The amplitude and latency of the major onset components of the onset/offset VECP were measured and plotted as a function of the logarithm of pooled cone contrast. The early onset components, achromatic C1 and chromatic N1, increase linearly with log contrast, but N1 has a higher contrast gain than C1. The late onset components, achromatic C2 and chromatic N2, have similar contrast gain, and similar response as a function of contrast level: both increase in the low-to-medium range of contrasts and saturate at high contrast levels. In the range of pooled cone contrast tested, C1 and N1 show similar latencies, whilst C2 shows shorter latencies than N2. We suggest that C1 and N1 are generated by the same visual mechanism with high red-green contrast gain and low luminance contrast gain, whilst C2 and N2 are generated by different visual mechanisms.
Resumo:
The authors describe on a Brazilian girl with coronal synostosis, facial asymmetry, ptosis, brachydactyly, significant learning difficulties, recurrent scalp infections with marked hair loss, and elevated serum immunoglobulin E. Standard lymphocyte karyotype showed a small additional segment in 7p21[46,XX,add(7)(p21)]. Deletion of the TWIST1 gene, detected by Multiplex Ligation Probe-dependent Amplification (MPLA) and array-CGH, was consistent with phenotype of SaethreChotzen syndrome. Array CGH also showed deletion of four other genes at 7p21.1 (SNX13, PRPS1L1, HD9C9, and FERD3L) and the deletion of six genes (CACNA2D2, C3orf18, HEMK1, CISH, MAPKAPK3, and DOCK3) at 3p21.31. Our case reinforces FERD3L as candidate gene for intellectual disability and suggested that genes located in 3p21.3 can be related to hyper IgE phenotype. (C) 2012 Wiley Periodicals, Inc.
Resumo:
Epidermal or epidermoid cysts usually are benign, solitary-growing masses located in the mid- or lower dermis. They are believed to derive from pilosebaceous units and are lined with an epidermis-like epithelium including a granular cell layer.(1) The occurrence of multiple epidermal cysts on the scalp of nonsyndromic patients is extremely rare. Although the presence of squamous cell carcinoma in the wall of an isolated epidermoid cysts is well documented in the dermatological literature,(2,3) the authors are not aware of any article in the English literature describing orbital invasion by a carcinoma developed in isolated or multiple epidermoid cysts.
Resumo:
Abstract Background Recently, it was realized that the functional connectivity networks estimated from actual brain-imaging technologies (MEG, fMRI and EEG) can be analyzed by means of the graph theory, that is a mathematical representation of a network, which is essentially reduced to nodes and connections between them. Methods We used high-resolution EEG technology to enhance the poor spatial information of the EEG activity on the scalp and it gives a measure of the electrical activity on the cortical surface. Afterwards, we used the Directed Transfer Function (DTF) that is a multivariate spectral measure for the estimation of the directional influences between any given pair of channels in a multivariate dataset. Finally, a graph theoretical approach was used to model the brain networks as graphs. These methods were used to analyze the structure of cortical connectivity during the attempt to move a paralyzed limb in a group (N=5) of spinal cord injured patients and during the movement execution in a group (N=5) of healthy subjects. Results Analysis performed on the cortical networks estimated from the group of normal and SCI patients revealed that both groups present few nodes with a high out-degree value (i.e. outgoing links). This property is valid in the networks estimated for all the frequency bands investigated. In particular, cingulate motor areas (CMAs) ROIs act as ‘‘hubs’’ for the outflow of information in both groups, SCI and healthy. Results also suggest that spinal cord injuries affect the functional architecture of the cortical network sub-serving the volition of motor acts mainly in its local feature property. In particular, a higher local efficiency El can be observed in the SCI patients for three frequency bands, theta (3-6 Hz), alpha (7-12 Hz) and beta (13-29 Hz). By taking into account all the possible pathways between different ROI couples, we were able to separate clearly the network properties of the SCI group from the CTRL group. In particular, we report a sort of compensatory mechanism in the SCI patients for the Theta (3-6 Hz) frequency band, indicating a higher level of “activation” Ω within the cortical network during the motor task. The activation index is directly related to diffusion, a type of dynamics that underlies several biological systems including possible spreading of neuronal activation across several cortical regions. Conclusions The present study aims at demonstrating the possible applications of graph theoretical approaches in the analyses of brain functional connectivity from EEG signals. In particular, the methodological aspects of the i) cortical activity from scalp EEG signals, ii) functional connectivity estimations iii) graph theoretical indexes are emphasized in the present paper to show their impact in a real application.