3 resultados para Scale [ca. 1:7,200].None

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The acute direct action of angiotensin-(1-7) [ANG-(1-7)] on bicarbonate reabsorption (JHCO(3)(-)) was evaluated by stationary microperfusions on in vivo middle proximal tubules in rats using H ion-sensitive microelectrodes. The control JHCO(3)(-) is 2.82 ± 0.078 nmol·cm(-2)·s(-1) (50). ANG-(1-7) (10(-12) or 10(-9) M) in luminally perfused tubules decreases JHCO(3)(-) (36 or 60%, respectively), but ANG-(1-7) (10(-6) M) increases it (80%). A779 increases JHCO(3)(-) (30%) and prevents both the inhibitory and the stimulatory effects of ANG-(1-7) on it. S3226 decreases JHCO(3)(-) (45%) and changes the stimulatory effect of ANG-(1-7) to an inhibitory effect (30%) but does not affect the inhibitory effect of ANG-(1-7). Our results indicate that in the basal condition endogenous ANG-(1-7) inhibits JHCO(3)(-) and that the biphasic dose-dependent effect of ANG-(1-7) on JHCO(3)(-) is mediated by the Mas receptors via the Na(+)/H(+) exchanger 3 (NHE3). The control value of intracellular Ca(2+) concentration ([Ca(2+)](i)), as monitored using fura-2 AM, is 101 ± 2 nM (6), and ANG-(1-7) (10(-12), 10(-9), or 10(-6)M) transiently (3 min) increases it (by 151, 102, or 52%, respectively). A779 increases the [Ca(2+)](i) (25%) but impairs the stimulatory effect of all doses of ANG-(1-7) on it. The use of BAPTA or thapsigargin suggests a correlation between the ANG-(1-7) dose-dependent effects on [Ca(2+)](i) and JHCO(3)(-). Therefore, the interaction of the opposing dose-dependent effects of ANG II and ANG-(1-7) on [Ca(2+)](i) and JHCO(3)(-) may represent an physiological regulatory mechanism of extracellular volume and/or pH changes. However, whether [Ca(2+)](i) modification is an important direct mechanism for NHE3 activation by these peptides or is a side effect of other signaling pathways will require additional studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: To assess the microshear bond strength of 3 experimental adhesives with different degrees of hydrophilicity after 1, 7 and 90 days of storage. Materials and Methods: The bonding effectiveness of three experimental two-step etch-and-rinse adhesives (bis-GMA, bis-EMA/bis-GMA, polybutadiene [C6H12]) and one commercial adhesive (Single Bond) to sound hydrated dentin was determined using the nnicroshear test with delimitation of the adhesive area after 1, 7, and 90 days of storage in water at 37 degrees C. Two-way ANOVA was performed at the 0.05 probability level. The fractures were classified as adhesive, cohesive in dentin, cohesive in resin, and mixed. Results: The experimental adhesives showed values in the range of 11.31 to 12.96 MPa, with polybutadiene (PBH) showing the lowest bond strengths, bis-GMA the highest, and bis-EMA/bis-GMA intermediary values. Single Bond yielded bond strengths of approximately 24 MPa. Water storage decreased the bond strength in all adhesives. Adhesive fractures were predominant in experimental adhesives, while mixed fractures were the most frequent type in the Single Bond group. Conclusion: The experimental dentin adhesives of this study were able to form resin tags, but they could not penetrate into the collagen fibers and form hybrid layers. The resulting low bond strength decreased with increasing length of storage.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It has been previously shown that besides its classical role in blood pressure control the reninangiotensin system, mainly by action of angiotensin II on the AT1 receptor, exerts pro-inflammatory effects such as by inducing the production of cytokines. More recently, alternative pathways to this system were described, such as binding of angiotensin-(17) to receptor Mas, which was shown to counteract some of the effects evoked by activation of the angiotensin IIAT1 receptor axis. Here, by means of different molecular approaches we investigated the role of angiotensin-(17) in modulating inflammatory responses triggered in mouse peritoneal macrophages. Our results show that receptor Mas transcripts were up-regulated by eightfold in LPS-induced macrophages. Interestingly, macrophage stimulation with angiotensin-(17), following to LPS exposure, evoked an attenuation in expression of TNF-a and IL-6 pro-inflammatory cytokines; where this event was abolished when the receptor Mas selective antagonist A779 was also included. We then used heterologous expression of the receptor Mas in HEK293T cells to search for the molecular mechanisms underlying the angiotensin-(17)-mediated anti-inflammatory responses by a kinase array; what suggested the involvement of the Src kinase family. In LPS-induced macrophages, this finding was corroborated using the PP2 compound, a specific Src kinase inhibitor; and also by Western blotting when we observed that Ang-(17) attenuated the phosphorylation levels of Lyn, a member of the Src kinase family. Our findings bring evidence for an anti-inflammatory role for angiotensin-(17) at the cellular level, as well as show that its probable mechanism of action includes the modulation of Src kinases activities. J. Cell. Physiol. 227: 21172122, 2012. (C) 2011 Wiley Periodicals, Inc.