6 resultados para Satellite cells

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Duchenne muscular dystrophy (DMD), a lethal X-linked disorder, is the most common and severe form of muscular dystrophies, affecting I in 3,500 male births. Mutations in the DMD gene lead to the absence of muscle dystrophin and a progressive degeneration of skeletal muscle. The possibility to treat DMD through cell therapy has been widely investigated. We have previously shown that human adipose-derived stromal cells (hASCs) injected systemically in SJL mice are able to reach and engraft in the host muscle, express human muscle proteins, and ameliorate the functional performance of injected animals without any immunosuppression. However, before starting clinical trials in humans many questions still need to be addressed in preclinical studies, in particular in larger animal models, when available. The best animal model to address these questions is the golden retriever muscular dystrophy (GRMD) dog that reproduces the full spectrum of human DMD. Affected animals carry a mutation that predicts a premature termination codon in exon 8 and a peptide that is 5% the size of normal dystrophin. These dogs present clinical signs within the first weeks and most of them do not survive beyond age two. Here we show the results of local and intravenous injections of hASCs into GRMD dogs, without immunosuppression. We observed that hASCs injected systemically into the dog cephalic vein are able to reach, engraft, and express human dystrophin in the host GRMD dystrophic muscle up to 6 months after transplantation. Most importantly, we demonstrated that injecting a huge quantity of human mesenchymal cells in a large-animal model, without immunosuppression, is a safe procedure, which may have important applications for future therapy in patients with different forms of muscular dystrophies.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This work investigated the effect of gallium arsenide (GaAs) irradiation (power: 5 mW; intensity: 77.14 mW/cm(2), spot: 0.07 cm(2)) on regenerating skeletal muscles damaged by crotoxin (CTX). Male C57Bl6 mice were divided into six groups (n = 5 each): control, treated only with laser at doses of 1.5 J or 3 J, CTX-injured and, CTX-injured and treated with laser at doses of 1.5 J or 3 J. The injured groups received a CTX injection into the tibialis anterior (TA) muscle. After 3 days, TA muscles were submitted to GaAs irradiation at doses of 1.5 or 3 J (once a day, during 5 days) and were killed on the eighth day. Muscle histological sections were stained with hematoxylin and eosin (H&E) in order to determine the myofiber cross-sectional area (CSA), the previously injured muscle area (PIMA) and the area density of connective tissue. The gene expression of MyoD and myogenin was detected by real-time PCR. GaAs laser at a dose of 3 J, but not 1.5 J, significantly increased the CSA of regenerating myofibers and reduced the PIMA and the area density of intramuscular connective tissue of CTX-injured muscles. MyoD gene expression increased in the injured group treated with GaAs laser at a dose of 1.5 J. The CTX-injured, 3-J GaAs laser-treated, and the CTX-injured and treated with 3-J laser groups showed an increase in myogenin gene expression when compared to the control group. Our results suggest that GaAs laser treatment at a dose of 3 J improves skeletal muscle regeneration by accelerating the recovery of myofiber mass.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The genetically determined muscular dystrophies are caused by mutations in genes coding for muscle proteins. Differences in the phenotypes are mainly the age of onset and velocity of progression. Muscle weakness is the consequence of myofiber degeneration due to an imbalance between successive cycles of degeneration/regeneration. While muscle fibers are lost, a replacement of the degraded muscle fibers by adipose and connective tissues occurs. Major investigation points are to elicit the involved pathophysiological mechanisms to elucidate how each mutation can lead to a specific degenerative process and how the regeneration is stimulated in each case. To answer these questions, we used four mouse models with different mutations causing muscular dystrophies, Dmd (mdx) , SJL/J, Large (myd) and Lama2 (dy2J) /J, and compared the histological changes of regeneration and fibrosis to the expression of genes involved in those processes. For regeneration, the MyoD, Myf5 and myogenin genes related to the proliferation and differentiation of satellite cells were studied, while for degeneration, the TGF-beta 1 and Pro-collagen 1 alpha 2 genes, involved in the fibrotic cascade, were analyzed. The result suggests that TGF-beta 1 gene is activated in the dystrophic process in all the stages of degeneration, while the activation of the expression of the pro-collagen gene possibly occurs in mildest stages of this process. We also observed that each pathophysiological mechanism acted differently in the activation of regeneration, with distinctions in the induction of proliferation of satellite cells, but with no alterations in stimulation to differentiation. Dysfunction of satellite cells can, therefore, be an important additional mechanism of pathogenesis in the dystrophic muscle.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Heat shock proteins play a key regulatory role in cellular defense. To investigate the role of the inducible 70-kDa heat shock protein (HSP70) in skeletal muscle atrophy and subsequent recovery, soleus (SOL) and extensor digitorum longus (EDL) muscles from overexpressing HSP70 transgenic mice were immobilized for 7 days and subsequently released from immobilization and evaluated after 7 days. Histological analysis showed that there was a decrease in cross-sectional area of type II myofiber from EDL and types I and II myofiber from SOL muscles at 7-day immobilization in both wild-type and HSP70 mice. At 7-day recovery, EDL and SOL myofibers from HSP70 mice, but not from wild-type mice, recovered their size. Muscle tetanic contraction decreased only in SOL muscles from wild-type mice at both 7-day immobilization and 7-day recovery; however, it was unaltered in the respective groups from HSP70 mice. Although no effect in a fatigue protocol was observed among groups, we noticed a better contractile performance of EDL muscles from overexpressing HSP70 groups as compared to their matched wild-type groups. The number of NCAM positive-satellite cells reduced after immobilization and recovery in both EDL and SOL muscles from wild-type mice, but it was unchanged in the muscles from HSP70 mice. These results suggest that HSP70 improves structural and functional recovery of skeletal muscle after disuse atrophy, and this effect might be associated with preservation of satellite cell amount.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background: The neural mobilization technique is a noninvasive method that has proved clinically effective in reducing pain sensitivity and consequently in improving quality of life after neuropathic pain. The present study examined the effects of neural mobilization (NM) on pain sensitivity induced by chronic constriction injury (CCI) in rats. The CCI was performed on adult male rats, submitted thereafter to 10 sessions of NM, each other day, starting 14 days after the CCI injury. Over the treatment period, animals were evaluated for nociception using behavioral tests, such as tests for allodynia and thermal and mechanical hyperalgesia. At the end of the sessions, the dorsal root ganglion (DRG) and spinal cord were analyzed using immunohistochemistry and Western blot assays for neural growth factor (NGF) and glial fibrillary acidic protein (GFAP). Results: The NM treatment induced an early reduction (from the second session) of the hyperalgesia and allodynia in CCI-injured rats, which persisted until the end of the treatment. On the other hand, only after the 4th session we observed a blockade of thermal sensitivity. Regarding cellular changes, we observed a decrease of GFAP and NGF expression after NM in the ipsilateral DRG (68% and 111%, respectively) and the decrease of only GFAP expression after NM in the lumbar spinal cord (L3-L6) (108%). Conclusions: These data provide evidence that NM treatment reverses pain symptoms in CCI-injured rats and suggest the involvement of glial cells and NGF in such an effect.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background: Heart failure (HF) is known to lead to skeletal muscle atrophy and dysfunction. However, intracellular mechanisms underlying HF-induced myopathy are not fully understood. We hypothesized that HF would increase oxidative stress and ubiquitin-proteasome system (UPS) activation in skeletal muscle of sympathetic hyperactivity mouse model. We also tested the hypothesis that aerobic exercise training (AET) would reestablish UPS activation in mice and human HF. Methods/Principal Findings: Time-course evaluation of plantaris muscle cross-sectional area, lipid hydroperoxidation, protein carbonylation and chymotrypsin-like proteasome activity was performed in a mouse model of sympathetic hyperactivity-induced HF. At the 7th month of age, HF mice displayed skeletal muscle atrophy, increased oxidative stress and UPS overactivation. Moderate-intensity AET restored lipid hydroperoxides and carbonylated protein levels paralleled by reduced E3 ligases mRNA levels, and reestablished chymotrypsin-like proteasome activity and plantaris trophicity. In human HF (patients randomized to sedentary or moderate-intensity AET protocol), skeletal muscle chymotrypsin-like proteasome activity was also increased and AET restored it to healthy control subjects' levels. Conclusions: Collectively, our data provide evidence that AET effectively counteracts redox imbalance and UPS overactivation, preventing skeletal myopathy and exercise intolerance in sympathetic hyperactivity-induced HF in mice. Of particular interest, AET attenuates skeletal muscle proteasome activity paralleled by improved aerobic capacity in HF patients, which is not achieved by drug treatment itself. Altogether these findings strengthen the clinical relevance of AET in the treatment of HF.