3 resultados para Saint Kitts and Nevis

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Among the marine invertebrate groups recorded from oceanic islands, bryozoans stand out because they can live and reproduce in suboptimal habitats, which may enhance their dispersal capabilities. This study aimed to update the checklist of bryozoans known from the Saint Peter and Saint Paul Archipelago (ASPSP) and discusses their distribution. During the five expeditions conducted between 2007 and 2009, 22 species were found, of which 16 were new occurrences for the archipelago. The bryozoans were collected from different biotic (algae and invertebrates) and abiotic (rocks, rubble and wrecks) substrata. The bryozoan community in ASPSP includes: eight new and probably endemic species, five species that belong to widespread species complexes, three species known only from the Brazilian coast, two species reported from the Western Atlantic and one species recorded from oceanic islets in the Atlantic. Additionally, three species are widespread in tropical to subtropical waters. Margaretta buski can be highlighted as the most conspicuous and abundant species between 1045 m deep and acts as an "ecosystem engineer".

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fissurella mesoatlantica n. sp. is endemic to the Saint Peter and Saint Paul Archipelago, Brazil, located approximately in the middle Atlantic (00 degrees 55N. 29 degrees 20W). The species is very similar to F. clenchi from the mainland Brazilian coast, differing in having a taller. more richly sculptured shell and by anatomical details. such its the papillae of mantle border and epipodial tentacles. A complete anatomical description is included.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In savannah and tropical grasslands, which account for 60% of grasslands worldwide, a large share of ecosystem carbon is located below ground due to high root:shoot ratios. Temporal variations in soil CO2 efflux (R-S) were investigated in a grassland of coastal Congo over two years. The objectives were (1) to identify the main factors controlling seasonal variations in R-S and (2) to develop a semi-empirical model describing R-S and including a heterotrophic component (R-H) and an autotrophic component (R-A). Plant above-ground activity was found to exert strong control over soil respiration since 71% of seasonal R-S variability was explained by the quantity of photosynthetically active radiation absorbed (APAR) by the grass canopy. We tested an additive model including a parameter enabling R-S partitioning into R-A and R-H. Assumptions underlying this model were that R-A mainly depended on the amount of photosynthates allocated below ground and that microbial and root activity was mostly controlled by soil temperature and soil moisture. The model provided a reasonably good prediction of seasonal variations in R-S (R-2 = 0.85) which varied between 5.4 mu mol m(-2) s(-1) in the wet season and 0.9 mu mol m(-2) s(-1) at the end of the dry season. The model was subsequently used to obtain annual estimates of R-S, R-A and R-H. In accordance with results reported for other tropical grasslands, we estimated that R-H accounted for 44% of R-S, which represented a flux similar to the amount of carbon brought annually to the soil from below-ground litter production. Overall, this study opens up prospects for simulating the carbon budget of tropical grasslands on a large scale using remotely sensed data. (C) 2012 Elsevier B.V. All rights reserved.