54 resultados para SYMPATHETIC CHEMOREFLEX
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Moraes DJ, Zoccal DB, Machado BH. Sympathoexcitation during chemoreflex active expiration is mediated by L-glutamate in the RVLM/Botzinger complex of rats. J Neurophysiol 108: 610-623, 2012. First published April 25, 2012; doi:10.1152/jn.00057.2012.-The involvement of glutamatergic neurotransmission in the rostral ventrolateral medulla/Botzinger/pre-Botzinger complexes (RVLM/BotC/pre-BotC) on the respiratory modulation of sympathoexcitatory response to peripheral chemoreflex activation (chemoreflex) was evaluated in the working heart-brain stem preparation of juvenile rats. We identified different types of baro- and chemosensitive presympathetic and respiratory neurons intermingled within the RVLM/BotC/pre-BotC. Bilateral microinjections of kynurenic acid (KYN) into the rostral aspect of RVLM (RVLM/BotC) produced an additional increase in frequency of the phrenic nerve (PN: 0.38 +/- 0.02 vs. 1 +/- 0.08 Hz; P < 0.05; n = 18) and hypoglossal (HN) inspiratory response (41 +/- 2 vs. 82 +/- 2%; P < 0.05; n = 8), but decreased postinspiratory (35 +/- 3 vs. 12 +/- 2%; P < 0.05) and late-expiratory (24 +/- 4 vs. 2 +/- 1%; P < 0.05; n = 5) abdominal (AbN) responses to chemoreflex. Likewise, expiratory vagal (cVN; 67 +/- 6 vs. 40 +/- 2%; P < 0.05; n = 5) and expiratory component of sympathoexcitatory (77 +/- 8 vs. 26 +/- 5%; P < 0.05; n = 18) responses to chemoreflex were reduced after KYN microinjections into RVLM/BotC. KYN microinjected into the caudal aspect of the RVLM (RVLM/pre-BotC; n = 16) abolished inspiratory responses [PN (n = 16) and HN (n = 6)], and no changes in magnitude of sympathoexcitatory (n = 16) and expiratory (AbN and cVN; n = 10) responses to chemoreflex, producing similar and phase-locked vagal, abdominal, and sympathetic responses. We conclude that in relation to chemoreflex activation 1) ionotropic glutamate receptors in RVLM/BotC and RVLM/pre-BtC are pivotal to expiratory and inspiratory responses, respectively; and 2) activation of ionotropic glutamate receptors in RVLM/BotC is essential to the coupling of active expiration and sympathoexcitatory response.
Resumo:
Moraes DJ, Dias MB, Cavalcanti-Kwiatkoski R, Machado BH, Zoccal DB. Contribution of retrotrapezoid nucleus/parafacial respiratory region to the expiratory-sympathetic coupling in response to peripheral chemoreflex in rats. J Neurophysiol 108: 882-890, 2012. First published May 16, 2012; doi:10.1152/jn.00193.2012.-Central mechanisms of coupling between respiratory and sympathetic systems are essential for the entrainment between the enhanced respiratory drive and sympathoexcitation in response to hypoxia. However, the brainstem nuclei and neuronal network involved in these respiratory-sympathetic interactions remain unclear. Here, we evaluated whether the increase in expiratory activity and expiratory-modulated sympathoexcitation produced by the peripheral chemoreflex activation involves the retrotrapezoid nucleus/parafacial respiratory region (RTN/pFRG). Using decerebrated arterially perfused in situ rat preparations (60-80 g), we recorded the activities of thoracic sympathetic (tSN), phrenic (PN), and abdominal nerves (AbN) as well as the extracellular activity of RTN/pFRG expiratory neurons, and reflex responses to chemoreflex activation were evaluated before and after inactivation of the RTN/pFRG region with muscimol (1 mM). In the RTN/pFRG, we identified late-expiratory (late-E) neurons (n = 5) that were silent at resting but fired coincidently with the emergence of late-E bursts in AbN after peripheral chemoreceptor activation. Bilateral muscimol microinjections into the RTN/pFRG region (n = 6) significantly reduced basal PN frequency, mean AbN activity, and the amplitude of respiratory modulation of tSN (P < 0.05). With respect to peripheral chemoreflex responses, muscimol microinjections in the RTN/pFRG enhanced the PN inspiratory response, abolished the evoked late-E activity of AbN, but did not alter either the magnitude or pattern of the tSN reflex response. These findings indicate that the RTN/pFRG region is critically involved in the processing of the active expiratory response but not of the expiratory-modulated sympathetic response to peripheral chemoreflex activation of rat in situ preparations.
Resumo:
Costa-Silva JH, Zoccal DB, Machado BH. Chronic intermittent hypoxia alters glutamatergic control of sympathetic and respiratory activities in the commissural NTS of rats. Am J Physiol Regul Integr Comp Physiol 302: R785-R793, 2012. First published December 28, 2011; doi:10.1152/ajpregu.00363.2011.-Sympathetic overactivity and altered respiratory control are commonly observed after chronic intermittent hypoxia (CIH) exposure. However, the central mechanisms underlying such neurovegetative dysfunctions remain unclear. Herein, we hypothesized that CIH (6% O-2 every 9 min, 8 h/day, 10 days) in juvenile rats alters glutamatergic transmission in the commissural nucleus tractus solitarius (cNTS), a pivotal site for integration of peripheral chemoreceptor inputs. Using an in situ working heart-brain stem preparation, we found that L-glutamate microinjections (1, 3, and 10 mM) into the cNTS of control rats (n = 8) evoked increases in thoracic sympathetic nerve (tSN) and central vagus nerve (cVN) activities combined with inhibition of phrenic nerve (PN) activity. Besides, the ionotropic glutamatergic receptor antagonism with kynurenic acid (KYN; 250 mM) in the cNTS of control group (n = 7) increased PN burst duration and frequency. In the CIH group (n = 10), the magnitude of L-glutamate-induced cVN excitation was smaller, and the PN inhibitory response was blunted (P < 0.05). In addition, KYN microinjections into the cNTS of CIH rats (n = 9) did not alter PN burst duration and produced smaller increases in its frequency compared with controls. Moreover, KYN microinjections into the cNTS attenuated the sympathoexcitatory response to peripheral chemoreflex activation in control but not in CIH rats (P < 0.05). These functional CIH-induced alterations were accompanied by a significant 10% increase of N-methyl-D-aspartate receptor 1 (NMDAR1) and glutamate receptor 2/3 (GluR2/3) receptor subunit density in the cNTS (n = 3-8, P < 0.05), evaluated by Western blot analysis. These data indicate that glutamatergic transmission is altered in the cNTS of CIH rats and may contribute to the sympathetic and respiratory changes observed in this experimental model.
Resumo:
The aim of the present study was to investigate the participation of the sympathetic nervous system (SNS) in the control of glycerol-3-P (G3P) generating pathways in white adipose tissue (WAT) of rats in three situations in which the plasma insulin levels are low. WAT from 48 h fasted animals, 3 day-streptozotocin diabetic animals and high-protein, carbohydrate-free (HP) diet-fed rats was surgical denervated and the G3P generation pathways were evaluated. Food deprivation, diabetes and the HP diet provoke a marked decrease in the rate of glucose uptake and glycerokinase (GyK) activity, but a significant increase in the glyceroneogenesis, estimated by the phosphoenolpyruvate carboxykinase (PEPCK) activity and the incorporation of 1-[C-14]-pyruvate into glycerol-TAG. The denervation provokes a reduction (similar to 70%) in the NE content of WAT in fasted, diabetic and HP diet-fed rats. The denervation induced an increase in WAT glucose uptake of fed, fasted, diabetic and HP diet-fed rats (40%, 60%, 3.2 fold and 35%, respectively). TAG-glycerol synthesis from pyruvate was reduced by denervation in adipocytes of fed (58%) and fasted (36%), saline-treated (58%) and diabetic (23%), and HP diet-fed rats (11%). In these same groups the denervation reduced the PEPCK mRNA expression (75%-95%) and the PEPCK activity (35%-60%). The denervation caused a similar to 35% decrease in GyK activity of control rats and a further similar to 35% reduction in the already low enzyme activity of fasted, diabetic and HP diet-fed rats. These data suggest that the SNS plays an important role in modulating G3P generating pathways in WAT, in situations where insulin levels are low. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
Introduction: We evaluated the role of cardiovascular autonomic changes in hemodynamics at rest and in response to exercise in streptozotocin-induced diabetic rats. Methods: Male Wistar rats were divided into nondiabetic (ND, n = 8) and diabetic (D, n = 8) groups. Arterial pressure signals were recorded in the basal state and after atropine or propranolol injections at rest, during exercise and during recovery. Results: At rest, vagal tonus was reduced in D (37 +/- 3 bpm) in comparison with the ND group (61 +/- 9 bpm). Heart rate during exercise was lower in D in relation to ND rats associated with reduced vagal withdrawal in the D group. The D rats had an increase in vagal tonus in the recovery period (49 +/- 6 bpm). Conclusions: Exercise-induced hemodynamic adjustment impairment in diabetic rats was associated with reduced cardiac vagal control. The vagal dysfunction was attenuated after aerobic exercise, reinforcing the positive role of this approach in the management of cardiovascular risk in diabetics. Muscle Nerve 46: 96101, 2012
Resumo:
To evaluate the feasibility, safety, and potential beneficial effects of left cardiac sympathetic denervation (LCSD) in systolic heart failure (HF) patients. In this prospective, randomized pilot study, inclusion criteria were New York Heart Association (NYHA) functional class II or III, left ventricular ejection fraction (LVEF) 40, sinus rhythm, and resting heart rate 65 b.p.m., despite optimal medical therapy (MT). Fifteen patients were randomly assigned either to MT alone or MT plus LCSD. The primary endpoint was safety, measured by mortality in the first month of follow-up and morbidity according to pre-specified criteria. Secondary endpoints were exercise capacity, quality of life, LVEF, muscle sympathetic nerve activity (MSNA), brain natriuretic peptide (BNP) levels and 24 h Holter mean heart rate before and after 6 months. We studied clinical effects in long-term follow-up. Ten patients underwent LCSD. There were no adverse events attributable to surgery. In the LCSD group, LVEF improved from 25 6.6 to 33 5.2 (P 0.03); 6 min walking distance improved from 167 35 to 198 47 m (P 0.02). Minnesota Living with Heart Failure Questionnaire (MLWHFQ) score physical dimension changed from 21 5 to 15 7 (P 0.06). The remaining analysed variables were unchanged. During 848 549 days of follow-up, in the MT group, three patients either died or underwent cardiac transplantation (CT), while in the LCSD group six were alive without CT. LCSD was feasible and seemed to be safe in systolic HF patients. Its beneficial effects warrant the development of a larger randomized trial. Trail registration: NCT01224899.
Resumo:
De Angelis K, Senador DD, Mostarda C, Irigoyen MC, Morris M. Sympathetic overactivity precedes metabolic dysfunction in a fructose model of glucose intolerance in mice. Am J Physiol Regul Integr Comp Physiol 302: R950-R957, 2012. First published February 8, 2012; doi: 10.1152/ajpregu.00450.2011.-Consumption of high levels of fructose in humans and animals leads to metabolic and cardiovascular dysfunction. There are questions as to the role of the autonomic changes in the time course of fructose-induced dysfunction. C57/BL male mice were given tap water or fructose water (100 g/l) to drink for up to 2 mo. Groups were control (C), 15-day fructose (F15), and 60-day fructose (F60). Light-dark patterns of arterial pressure (AP) and heart rate (HR), and their respective variabilities were measured. Plasma glucose, lipids, insulin, leptin, resistin, adiponectin, and glucose tolerance were quantified. Fructose increased systolic AP (SAP) at 15 and 60 days during both light (F15: 123 +/- 2 and F60: 118 +/- 2 mmHg) and dark periods (F15: 136 +/- 4 and F60: 136 +/- 5 mmHg) compared with controls (light: 111 +/- 2 and dark: 117 +/- 2 mmHg). SAP variance (VAR) and the low-frequency component (LF) were increased in F15 (>60% and >80%) and F60 (>170% and >140%) compared with C. Cardiac sympatho-vagal balance was enhanced, while baroreflex function was attenuated in fructose groups. Metabolic parameters were unchanged in F15. However, F60 showed significant increases in plasma glucose (26%), cholesterol (44%), triglycerides (22%), insulin (95%), and leptin (63%), as well as glucose intolerance. LF of SAP was positively correlated with SAP. Plasma leptin was correlated with triglycerides, insulin, and glucose tolerance. Results show that increased sympathetic modulation of vessels and heart preceded metabolic dysfunction in fructose-consuming mice. Data suggest that changes in autonomic modulation may be an initiating mechanism underlying the cluster of symptoms associated with cardiometabolic disease.
Resumo:
We described recently that systemic hypoxia provokes vasoconstriction in heart failure (HF) patients. We hypothesized that either the exaggerated muscle sympathetic nerve activity and/or endothelial dysfunction mediate the blunted vasodilatation during hypoxia in HF patients. Twenty-seven HF patients and 23 age-matched controls were studied. Muscle sympathetic nerve activity was assessed by microneurography and forearm blood flow (FBF) by venous occlusion plethysmography. Peripheral chemoreflex control was evaluated through the inhaling of a hypoxic gas mixture (10% O-2 and 90% N-2). Basal muscle sympathetic nerve activity was greater and basal FBF was lower in HF patients versus controls. During hypoxia, muscle sympathetic nerve activity responses were greater in HF patients, and forearm vasodilatation in HF was blunted versus controls. Phentolamine increased FBF responses in both groups, but the increase was lower in HF patients. Phentolamine and N-G-monomethyl-L-arginine infusion did not change FBF responses in HF but markedly blunted the vasodilatation in controls. FBF responses to hypoxia in the presence of vitamin C were unchanged and remained lower in HF patients versus controls. In conclusion, muscle vasoconstriction in response to hypoxia in HF patients is attributed to exaggerated reflex sympathetic nerve activation and blunted endothelial function (NO activity). We were unable to identify a role for oxidative stress in these studies. (Hypertension. 2012; 60: 669-676.) . Online Data Supplement
Resumo:
Several studies from our group have indicated that the BNST play an important role in baroreflex modulation. However, the involvement of the BNST in the chemoreflex activity is unknown. Thus, in the present study, we investigated the effect of the local bed nucleus of stria terminalis (BNST) neurotransmission inhibition by bilateral microinjections of the non-selective synaptic blocker cobalt chloride (CoCl2) on the cardiovascular responses to chemoreflex activation in rats. For this purpose, chemoreflex was activated with KCN (i.v.) before and after microinjections of CoCl2 into the BNST. Reversible BNST inactivation produced no significant changes in the magnitude and durations of both pressor and bradycardic responses to intravenous KCN infusion. These findings suggesting that BNST neurotransmission have not influence on both sympathoexcitatory and parasympathoexcitatory components of the peripheral chemoreflex activation. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Fibromyalgia (FM) is characterized by chronic non-inflammatory widespread pain (CWP) and changes in sympathetic function. In attempt to elucidate the pathophysiological mechanisms of FM we used a well-established CWP animal model. We aimed to evaluate changes in cardiac autonomic balance and baroreflex function in response to CWP induction in rats. CWP was induced by two injections of acidic saline (pH 4.0, n = 8) five days apart into the left gastrocnemius muscle. Control animals were injected twice with normal saline (pH 7.2, n = 6). One day after the second injection of acidic saline or normal saline, the animals had pulse interval (PI) and systolic arterial pressure (SAP) variability, and spontaneous baroreflex sensitivity (BRS) evaluated. After induction of CWP, there was an increase of power in the low frequency (LF) band of PI spectrum (12.75 +/- 1.04 nu), a decrease in the high frequency (HF) band (87.25 +/- 1.04 nu) and an increase of LF/HF ratio (0.16 +/- 0.01), when compared to control animals (7.83 +/- 1.13 nu LF; 92.16 +/- 1.13 nu HF; 0.08 +/- 0.01 LF/HF). In addition, there was an increase of power in the LF band of SAP spectrum (7.93 +/- 1.39 mmHg(2)) when compared to control animals (2.97 +/- 0.61 mmHg(2)). BRS was lower in acidic saline injected rats (0.59 +/- 0.06 ms/mmHg) when compared to control animals (0.71 +/- 0.03 ms/mmHg). Our results showed that induction of CWP in rats shifts cardiac sympathovagal balance towards sympathetic predominance and decreases BRS. These data corroborate findings in humans with FM. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The goal of this study was to evaluate if the immunohistochemical expression of alpha-3 neuronal nicotinic acetylcholine receptor subunit in sympathetic ganglia remains stable after brain death, determining the possible use of sympathetic thoracic ganglia from subjects after brain death as study group. The third left sympathetic ganglion was resected from patients divided in two groups: BD-organ donors after brain death and CON-patients submitted to sympathectomy for hyperhidrosis (control group). Immunohistochemical staining for alpha-3 neuronal nicotinic acetylcholine receptor subunit was performed; strong and weak expression areas were quantified in both groups. The BD group showed strong alpha-3 neuronal nicotinic acetylcholine receptor expression in 6.55% of the total area, whereas the CON group showed strong expression in 5.91% (p = 0.78). Weak expression was found in 6.47% of brain-dead subjects and in 7.23% of control subjects (p = 0.31). Brain death did not affect the results of the immunohistochemical analysis of sympathetic ganglia, and its use as study group is feasible.
Resumo:
PURPOSE: To evaluate the effect of inspiratory muscle training (IMT) on cardiac autonomic modulation and on peripheral nerve sympathetic activity in patients with chronic heart failure (CHF). METHODS: Functional capacity, low-frequency (LF) and high-frequency (HF) components of heart rate variability, muscle sympathetic nerve activity inferred by microneurography, and quality of life were determined in 27 patients with CHF who had been sequentially allocated to 1 of 2 groups: (1) control group (with no intervention) and (2) IMT group. Inspiratory muscle training consisted of respiratory exercises, with inspiratory threshold loading of seven 30-minute sessions per week for a period of 12 weeks, with a monthly increase of 30% in maximal inspiratory pressure (PImax) at rest. Multivariate analysis was applied to detect differences between baseline and followup period. RESULTS: Inspiratory muscle training significantly increased PImax (59.2 +/- 4.9 vs 87.5 +/- 6.5 cmH(2)O, P = .001) and peak oxygen uptake (14.4 +/- 0.7 vs 18.9 +/- 0.8 mL.kg(-1).min(-1), P = .002); decreased the peak ventilation (V. E) +/- carbon dioxide production (V-CO2) ratio (35.8 +/- 0.8 vs 32.5 +/- 0.4, P = .001) and the (V) over dotE +/-(V) over dotCO(2) slope (37.3 +/- 1.1 vs 31.3 +/- 1.1, P = .004); increased the HF component (49.3 +/- 4.1 vs 58.4 +/- 4.2 normalized units, P = .004) and decreased the LF component (50.7 +/- 4.1 vs 41.6 +/- 4.2 normalized units, P = .001) of heart rate variability; decreased muscle sympathetic nerve activity (37.1 +/- 3 vs 29.5 +/- 2.3 bursts per minute, P = .001); and improved quality of life. No significant changes were observed in the control group. CONCLUSION: Home-based IMT represents an important strategy to improve cardiac and peripheral autonomic controls, functional capacity, and quality of life in patients with CHF.
Resumo:
Adenosine is the first drug of choice in the treatment of supraventricular arrhythmias. While the effects of adenosine on sympathetic nerve activity (SNA) have been investigated, no information is available on the effects on cardiac vagal nerve activity (VNA). We assessed in rats the responses of cardiac VNA, SNA and cardiovascular variables to intravenous bolus administration of adenosine. In 34 urethane-anaesthetized rats, cardiac VNA or cervical preganglionic sympathetic fibres were recorded together with ECG, arterial pressure and ventilation, before and after administration of three doses of adenosine (100, 500 and 1000 mu g kg-1). The effects of adenosine were also assessed in isolated perfused hearts (n= 5). Adenosine induced marked bradycardia and hypotension, associated with a significant dose-dependent increase in VNA (+204 +/- 56%, P < 0.01; +275 +/- 120%, P < 0.01; and +372 +/- 78%, P < 0.01, for the three doses, respectively; n= 7). Muscarinic blockade by atropine (5 mg kg-1, i.v.) significantly blunted the adenosine-induced bradycardia (-56.0 +/- 4.5%, P < 0.05; -86.2 +/- 10.5%, P < 0.01; and -34.3 +/- 9.7%, P < 0.01, respectively). Likewise, adenosine-induced bradycardia was markedly less in isolated heart preparations. Previous barodenervation did not modify the effects of adenosine on VNA. On the SNA side, adenosine administration was associated with a dose-dependent biphasic response, including overactivation in the first few seconds followed by a later profound SNA reduction. Earliest sympathetic activation was abolished by barodenervation, while subsequent sympathetic withdrawal was affected neither by baro- nor by chemodenervation. This is the first demonstration that acute adenosine is able to activate cardiac VNA, possibly through a central action. This increase in vagal outflow could make an important contribution to the antiarrhythmic action of this substance.
Resumo:
Salivary gland function is regulated by both the sympathetic and parasympathetic nervous systems. Previously we showed that the basal sympathetic outflow to the salivary glands (SNA(SG)) was higher in hypertensive compared to normotensive rats and that diabetes reduced SNA(SG) discharge at both strains. In the present study we sought to investigate how SNA(SG) might be modulated by acute changes in the arterial pressure and whether baroreceptors play a functional role upon this modulation. To this end, we measured blood pressure and SNA(SG) discharge in Wistar-Kyoto rats (WRY-intact) and in WRY submitted to sinoaortic denervation (WRY-SAD). We made the following three major observations: (i) in WRY-intact rats, baroreceptor loading in response to intravenous infusion of the phenylephrine evoked an increase in SNA(SG) spike frequency (81%, p<0.01) accompanying the increase mean arterial pressure ((sic)MAP: +77 +/- 14 mmHg); (ii) baroreceptor unloading with sodium nitroprusside infusion elicited a decrease in SNA(SG) spike frequency (17%, p<0.01) in parallel with the fall in arterial blood pressure ((sic)MAP: 30 3 mmHg) in WRY-intact rats; iii) in the WRY-SAD rats, phenylephrine-evoked rises in the arterial pressure ((sic)MAP: +56 +/- 6 mmHg) failed to produce significant changes in the SNA(SG) spike frequency. Taken together, these data show that SNA(SG) increases in parallel with pharmacological-induced pressor response in a baroreceptor dependent way in anaesthetised rats. Considering the key role of SNA(SG) in salivary secretion, this mechanism, which differs from the classic cardiac baroreflex feedback loop, strongly suggests that baroreceptor signalling plays a decisive role in the regulation of salivary gland function. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
P2X receptors are expressed on ventrolateral medulla projecting paraventricular nucleus (PVN) neurons. Here, we investigate the role of adenosine 5′-triphosphate (ATP) in modulating sympathetic nerve activity (SNA) at the level of the PVN. We used an in situ arterially perfused rat preparation to determine the effect of P2 receptor activation and the putative interaction between purinergic and glutamatergic neurotransmitter systems within the PVN on lumbar SNA (LSNA). Unilateral microinjection of ATP into the PVN induced a dose-related increase in the LSNA (1 nmol: 38 ± 6 %, 2.5 nmol: 72 ± 7 %, 5 nmol: 96 ± 13 %). This increase was significantly attenuated by blockade of P2 receptors (pyridoxalphosphate-6-azophenyl-20,40-disulphonic acid, PPADS) and glutamate receptors (kynurenic acid, KYN) or a combination of both. The increase in LSNA elicited by L-glutamate microinjection into the PVN was not affected by a previous injection of PPADS. Selective blockade of non-N-methyl-D-aspartate receptors (6-cyano-7-nitroquinoxaline-2,3-dione disodium salt, CNQX), but not N-methyl-D-aspartate receptors (NMDA) receptors (DL-2-amino-5-phosphonopentanoic acid, AP5), attenuated the ATP-induced sympathoexcitatory effects at the PVN level. Taken together, our data show that purinergic neurotransmission within the PVN is involved in the control of SNA via P2 receptor activation. Moreover, we show an interaction between P2 receptors and non-NMDA glutamate receptors in the PVN suggesting that these functional interactions might be important in the regulation of sympathetic outflow