11 resultados para SWAY
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Optimal levels of noise stimulation have been shown to enhance the detection and transmission of neural signals thereby improving the performance of sensory and motor systems. The first series of experiments in the present study aimed to investigate whether subsensory electrical noise stimulation applied over the triceps surae (TS) in seated subjects decreases torque variability during a force-matching task of isometric plantar flexion and whether the same electrical noise stimulation decreases postural sway during quiet stance. Correlation tests were applied to investigate whether the noise-induced postural sway decrease is linearly predicted by the noise-induced torque variability decrease. A second series of experiments was conducted to investigate whether there are differences in torque variability between conditions in which the subsensory electrical noise is applied only to the TS, only to the tibialis anterior (TA) and to both TS and TA, during the force-matching task with seated subjects. Noise stimulation applied over the TS muscles caused a significant reduction in force variability during the maintained isometric force paradigm and also decreased postural oscillations during quiet stance. Moreover, there was a significant correlation between the reduction in force fluctuation and the decrease in postural sway with the electrical noise stimulation. This last result indicates that changes in plantar flexion force variability in response to a given subsensory random stimulation of the TS may provide an estimate of the variations in postural sway caused by the same subsensory stimulation of the TS. We suggest that the decreases in force variability and postural sway found here are due to stochastic resonance that causes an improved transmission of proprioceptive information. In the second series of experiments, the reduction in force variability found when noise was applied to the TA muscle alone did not reach statistical significance, suggesting that TS proprioception gives a better feedback to reduce force fluctuation in isometric plantar flexion conditions.
Resumo:
To evaluate whether a history of falls is directly related to the quadriceps muscular function and body sway, 26 elderly women were divided on the basis of the presence or absence of a history of falls. Evaluation of muscular power and anteroposterior and mediolateral displacements of center of pressure during consecutive stand and sit 5 times were performed. Fallers exhibited higher mediolateral displacement than nonfallers. No differences were observed for quadriceps power and for sit-to-stand time between groups (P<.05). The fall history was not related to the quadriceps muscular function or to the anteroposterior displacement during sit to stand.
Resumo:
Decreased activity of the lumbar stabilizer muscles has been identified in individuals with sway-back posture. Disuse can predispose these muscles to atrophy, which is characterized by a reduced cross-sectional area (CSA) and by fat infiltration. The aim of this study was to evaluate the amount of fat infiltration in the lumbar multifidus and lumbar erector spinae muscles as a sign of the muscle atrophy in individuals with sway-back posture, with and without low back pain. Forty-five sedentary individuals between 16 and 40 years old participated in this study. The sample was divided into three groups: symptomatic sway-back (SSBG) (n = 15), asymptomatic sway-back (ASBG) (n = 15), and control (CG) (n = 15). The individuals were first subjected to photographic analysis to classify their postures and were then referred for a magnetic resonance imaging (MRI) examination of the lumbar spine. The total (TCSA) and functional (FCSA) cross-sectional areas of the lumbar erector spinae together with lumbar multifidus and isolated lumbar multifidus muscles were measured from L1 to S1. The amount of fat infiltration was estimated as the difference between the TCSA and the FCSA. Greater fat deposition was observed in the lumbar erector spinae and lumbar multifidus muscles of the individuals in the sway-back posture groups than in the control group. Pain may have contributed to the difference in the amount of fat observed in the groups with the same postural deviation. Similarly, sway-back posture may have contributed to the tissue substitution relative to the control group independently of low back pain. The results of this study indicate that individuals with sway-back posture may be susceptible to morphological changes in their lumbar erector spinae and lumbar multifidus muscles, both due to the presence of pain and as a consequence of their habitual posture.
Resumo:
Esse estudo teve como objetivo examinar possíveis alterações na dinâmica intrínseca de crianças e adultos decorrentes de informações externas na realização de uma tarefa de manutenção da postura ereta. Participaram do estudo dez crianças de 8 anos de idade e dez adultos jovens de ambos os gêneros. Eles permaneceram na posição ereta dentro de uma sala móvel que foi movimentada continuamente para frente e para trás. Os participantes recebiam informação sobre o movimento da sala e eram solicitados a não oscilar ou a oscilar junto com o movimento da mesma. Os resultados mostraram que a manipulação da informação visual induziu oscilação corporal correspondente (dinâmica intrínseca) em crianças e adultos. Informação sobre o movimento da sala e solicitação de uma ação (informação comportamental) alteraram o relacionamento entre informação visual e oscilação corporal. Crianças apresentaram mais dificuldades em alterar a dinâmica intrínseca do que adultos, indicando que elas são mais dependentes da dinâmica intrínseca do que adultos. Esses resultados trazem implicações importantes para a situação de ensino-aprendizagem, pois indica que aprendizagem envolvendo crianças deve ser estruturada propiciando condições mais favoráveis para alterações na dinâmica intrínseca para que os objetivos da mesma sejam alcançados.
Resumo:
OBJECTIVE: The aim of the present study was to evaluate the influence of anthropometric characteristics and gender on postural balance in adults. One hundred individuals were examined (50 males, 50 females; age range 20-40 years). METHODS: The following body composition measurements were collected (using bone densitometry measurements): fat percentage (% fat), tissue (g), fat (g), lean mass (g), bone mineral content (g), and bone mineral density (g/cm(2)). In addition, the following anthropometric measurements were collected: body mass (kg), height (cm), length of the trunk-cephalic region (cm), length of the lower limbs (cm) and length of the upper limbs (cm). The following indices were calculated: body mass index (kg/m(2)), waist-hip ratio and the support base (cm 2). Also, a postural balance test was performed using posturography variables with open and closed eyes. RESULTS: The analysis revealed poor correlations between postural balance and the anthropometric variables. A multiple linear regression analysis demonstrated that the whole group (female and male) height explained 12% of the medial-lateral displacement, 10% of the speed of oscillation, and 11% of the displacement area. The length of the trunk-cephalic length explained 6% of the displacement in the anteroposterior direction. With eyes closed, the support base and height explained 18% of the medial displacement, and the lateral height explained 10% of the displacement speed and 5% of the scroll area. CONCLUSION: Measured using posturography, the postural balance was only slightly influenced by the anthropometric variables, both with open and closed eyes. Height was the anthropometric variable that most influenced postural balance, both in the whole group and separately for each gender. Postural balance was more influenced by anthropometric factors in males than females.
Resumo:
Long-haul drivers work in irregular schedules due to load delivery demands. In general, driving and sleeping occur at irregular times and, consequently, partial sleep deprivation and/or circadian misalignment may emerge and result in sleepiness at the wheel. In this way, the aim of this study was to verify changes in the postural control parameters of professional drivers after one-night working. Eight male truck drivers working at night - night drivers (ND) and nine day drivers (DD) volunteered to participate in this study. The night drivers' postural stability was assessed immediately before and after an approximately 430 km journey by two identical force platforms at departure and arrival sites. The DD group was measured before and after a day's work. An interaction effect of time of day and type of shift in both conditions: eyes open (p < 0.01) and eyes closed (p < 0.001) for amplitude of mediolateral movements was observed. Postural stability, measured by force platform, is affected by a night of work, suggesting that it could be an effect of circadian and homeostatic influences over postural control.
Resumo:
The vestibular-ocular reflex assessment is important, but not enough. Tridimensional electromagnetic sensor systems represent a new method to assess posturography. Aim: To assess body sway in healthy subjects who had positive Dix Hallpike and Epley maneuvers and with other vestibular dysfunctions by means of a three-dimensional system. Study design: Prospective. Materials and Methods: We had 23 healthy women, 15 with peripheral vestibular dysfunction found upon caloric test and 10 with positive Epley and Dix Hallpike maneuvers. All tests performed in the following positions: open and closed eyes on stable and unstable surfaces. Results: With the Eyes Open and on a stable surface, p < 0.01 between the control group and the one with peripheral vestibular dysfunction in all variables, except the a-p maximum, full speed and mediolateral trajectory velocity, which had a p < 0.01 between the group with vestibular dysfunction and controls in all positions. The group with positive Epley and Dix Hallpike maneuvers had p < 0.01 at full speed and in its components in the x and y in positions with open and eyes closed on an unstable surface. Conclusion: The tridimensional electromagnetic sensors system was able to generate reliable information about body sway in the study volunteers.
Resumo:
Background: Surfing is a sport that has become considerably popular, which increased interest in research about the aspects that can influence on the performance of these athletes, such as injuries, aerobic fitness and reaction time. Due to the ever-changing environment and high instability required for surfing, the surfers must develop some neuromuscular skills (agility, balance, muscle strength and flexibility) to acquire better performance in this modality. Nevertheless, there are still few scientific studies concerned about the investigation of these motor skills in surfing. Objective: The aim of this study was to evaluate the balance control in surfers compared to practitioners of other physical activities. Methods: Participants remained on a force platform while performing tasks involving visual deprivation (eyes open or closed) and somatosensory disturbance (steady surface or use of foam), with covariation of experimental conditions. The following variables were analyzed: speed and root mean square (RMS) displacement of the center of pressure in the anteroposterior (AP) and mediolateral (ML) directions. Results: The results showed no difference between groups during the experimental conditions, that is to say, both surfers and the control group varied over the conditions of eyes closed and on foam. Conclusion: Although surfing requires the surfer to have great balance control, the results did not reveal a relationship between this sport and better performance in balance control. However, we must consider the small sample size and the fact that this sport requires dynamic balance, while the study evaluated static balance.
Resumo:
Objective: The objective of this study was to analyze the efficacy of multisensory versus muscle strengthening to improve postural control in healthy community-dwelling elderly. Participants: We performed a single-blinded study with 46 community-dwelling elderly allocated to strength (GS, n = 23; 70.18 +/- 4.8 years 22 women and 1 man) and multisensory exercises groups (GM, n = 23; 68.8 +/- 5.9 years; 22 women and 1 man) for 12 weeks. Methods: We performed isokinetic evaluations of muscle groups in the ankle and foot including dorsiflexors, plantar flexors, inversion, and eversion. The oscillation of the center of pressure was assessed with a force platform. Results: The GM group presented a reduction in the oscillation (66.8 +/- 273.4 cm(2) to 11.1 +/- 11.6 cm(2); P = 0.02), which was not observed in the GS group. The GM group showed better results for the peak torque and work than the GS group, but without statistical significance. Conclusion: Although the GM group presented better results, it is not possible to state that one exercise regimen proved more efficacious than the other in improving balance control.
Resumo:
OBJECTIVE: The aim of this study was to evaluate the multisegmental static postural balance of active eutrophic and obese elderly women using a three-dimensional system under different sensory conditions. METHODS: A cross-sectional study was conducted on 31 elderly women (16 eutrophic and 15 obese) aged 65 to 75 years. The following anthropometric measurements were obtained: weight, height, waist and hip circumference, and handgrip strength. The physical activity level was evaluated using the International Physical Activity Questionnaire. Body composition was measured using the deuterium oxide dilution technique. The Polhemus (R) Patriot (three-dimensional) equipment was used to measure the parameters of postural balance along the anteroposterior and laterolateral axes. The data acquisition involved one trial of 60 s to test the limit of stability and four trials of 90 s each under the following conditions: (1) eyes open, stable surface; (2) eyes closed, stable surface; (3) eyes open, unstable surface; and (4) eyes closed, unstable surface. RESULTS: For the limit of stability, significant differences were observed in the maximum anteroposterior and laterolateral displacement (p<0.01) and in the parameter maximum anteroposterior displacement in the eyes closed stable surface condition (p<0.01) and maximum anteroposterior and laterolateral displacement in the eyes open unstable surface (p<0.01 and p = 0.03) and eyes closed unstable surface (p<0.01 and p<0.01) conditions. CONCLUSIONS: Obese elderly women exhibited a lower stability limit (lower sway area) compared with eutrophic women, leaving them more vulnerable to falls.
Resumo:
Body stability is controlled by the postural system and can be affected by fear and anxiety. Few studies have addressed freezing posture in psychiatric disorders. The purpose of the present study was to assess posturographic behavior in 30 patients with social anxiety disorder (SAD) and 35 without SAD during presentation of blocks of pictures with different valences. Neutral images consisted of objects taken from a catalog of pictures, negative images were mutilation pictures and anxiogenic images were related to situations regarding SAD fears. While participants were standing on a force platform, similar to a balance, displacement of the center of pressure in the mediolateral and anteroposterior directions was measured. We found that the SAD group exhibited a lower sway area and a lower velocity of sway throughout the experiment independent of the visual stimuli, in which the phobic pictures, a stimulus associated with a defense response, were unable to evoke a significantly more rigid posture than the others. We hypothesize that patients with SAD when entering in a situation of exposure, from the moment the pictures are presented, tend to move less than controls, remaining this way until the experiment ends. This discrete body manifestation can provide additional data to the characterization of SAD and its differentiation from other anxiety disorders, especially in situations regarding facing fear.