11 resultados para SUPERNOVAE

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Context. The angular diameter distances toward galaxy clusters can be determined with measurements of Sunyaev-Zel'dovich effect and X-ray surface brightness combined with the validity of the distance-duality relation, D-L(z)(1 + z)(2)/D-A(z) = 1, where D-L(z) and D-A(z) are, respectively, the luminosity and angular diameter distances. This combination enables us to probe galaxy cluster physics or even to test the validity of the distance-duality relation itself. Aims. We explore these possibilities based on two different, but complementary approaches. Firstly, in order to constrain the possible galaxy cluster morphologies, the validity of the distance-duality relation (DD relation) is assumed in the Lambda CDM framework (WMAP7). Secondly, by adopting a cosmological-model-independent test, we directly confront the angular diameters from galaxy clusters with two supernovae Ia (SNe Ia) subsamples (carefully chosen to coincide with the cluster positions). The influence of the different SNe Ia light-curve fitters in the previous analysis are also discussed. Methods. We assumed that eta is a function of the redshift parametrized by two different relations: eta(z) = 1 +eta(0)z, and eta(z) = 1 + eta(0)z/(1 + z), where eta(0) is a constant parameter quantifying the possible departure from the strict validity of the DD relation. In order to determine the probability density function (PDF) of eta(0), we considered the angular diameter distances from galaxy clusters recently studied by two different groups by assuming elliptical and spherical isothermal beta models and spherical non-isothermal beta model. The strict validity of the DD relation will occur only if the maximum value of eta(0) PDF is centered on eta(0) = 0. Results. For both approaches we find that the elliptical beta model agrees with the distance-duality relation, whereas the non-isothermal spherical description is, in the best scenario, only marginally compatible. We find that the two-light curve fitters (SALT2 and MLCS2K2) present a statistically significant conflict, and a joint analysis involving the different approaches suggests that clusters are endowed with an elliptical geometry as previously assumed. Conclusions. The statistical analysis presented here provides new evidence that the true geometry of clusters is elliptical. In principle, it is remarkable that a local property such as the geometry of galaxy clusters might be constrained by a global argument like the one provided by the cosmological distance-duality relation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The existence of inhomogeneities in the observed Universe modifies the distance-redshift relations thereby affecting the results of cosmological tests in comparison to the ones derived assuming spatially uniform models. By modeling the inhomogeneities through a Zeldovich-Kantowski-Dyer-Roeder approach which is phenomenologically characterized by a smoothness parameter alpha, we rediscuss the constraints on the cosmic parameters based on type Ia supernovae (SNe Ia) and gamma-ray bursts (GRBs) data. The present analysis is restricted to a flat Lambda CDM model with the reasonable assumption that Lambda does not clump. A chi(2) analysis using 557 SNe Ia data from the Union2 compilation data (R. Amanullah et al., Astrophys. J. 716, 712 (2010).) constrains the pair of parameters (Omega(m), alpha) to Omega(m) = 0.27(-0.03)(+0.08) (2 sigma) and alpha >= 0.25. A similar analysis based only on 59 Hymnium GRBs (H. Wei, J. Cosmol. Astropart. Phys. 08 (2010) 020.) constrains the matter density parameter to be Omega(m) = 0.35(-0.24)(+0.62) (2 sigma) while all values for the smoothness parameter are allowed. By performing a joint analysis, it is found that Omega(m) = 0.27(-0.06)(+0.06) and alpha >= 0.52. As a general result, although considering that current GRB data alone cannot constrain the smoothness alpha parameter, our analysis provides an interesting cosmological probe for dark energy even in the presence of inhomogeneities.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work, we present a class of geometries which describes wormholes in a Randall-Sundrum brane model, focusing on de Sitter backgrounds. Maximal extensions of the solutions are constructed and their causal structures are discussed. A perturbative analysis is developed, where matter and gravitational perturbations are studied. Analytical results for the quasinormal spectra are obtained and an extensive numerical survey is conducted. Our results indicate that the wormhole geometries presented are stable.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In accelerating dark energy models, the estimates of the Hubble constant, Ho, from Sunyaev-Zerdovich effect (SZE) and X-ray surface brightness of galaxy clusters may depend on the matter content (Omega(M)), the curvature (Omega(K)) and the equation of state parameter GO. In this article, by using a sample of 25 angular diameter distances of galaxy clusters described by the elliptical beta model obtained through the SZE/X-ray technique, we constrain Ho in the framework of a general ACDM model (arbitrary curvature) and a flat XCDM model with a constant equation of state parameter omega = p(x)/rho(x). In order to avoid the use of priors in the cosmological parameters, we apply a joint analysis involving the baryon acoustic oscillations (BA()) and the (MB Shift Parameter signature. By taking into account the statistical and systematic errors of the SZE/X-ray technique we obtain for nonflat ACDM model H-0 = 74(-4.0)(+5.0) km s(-1) Mpc(-1) (1 sigma) whereas for a fiat universe with constant equation of state parameter we find H-0 = 72(-4.0)(+5.5) km s(-1) Mpc(-1)(1 sigma). By assuming that galaxy clusters are described by a spherical beta model these results change to H-0 = 6(-7.0)(+8.0) and H-0 = 59(-6.0)(+9.0) km s(-1) Mpc(-1)(1 sigma), respectively. The results from elliptical description are in good agreement with independent studies from the Hubble Space Telescope key project and recent estimates based on the Wilkinson Microwave Anisotropy Probe, thereby suggesting that the combination of these three independent phenomena provides an interesting method to constrain the Bubble constant. As an extra bonus, the adoption of the elliptical description is revealed to be a quite realistic assumption. Finally, by comparing these results with a recent determination for a, flat ACDM model using only the SZE/X-ray technique and BAO, we see that the geometry has a very weak influence on H-0 estimates for this combination of data.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work we extend the first order formalism for cosmological models that present an interaction between a fermionic and a scalar field. Cosmological exact solutions describing universes filled with interacting dark energy and dark matter have been obtained. Viable cosmological solutions with an early period of decelerated expansion followed by late acceleration have been found, notably one which presents a dark matter component dominating in the past and a dark energy component dominating in the future. In another one, the dark energy alone is the responsible for both periods, similar to a Chaplygin gas case. Exclusively accelerating solutions have also been obtained.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigate theoretical and observational aspects of a time-dependent parameterization for the dark energy equation of state w(z), which is a well behaved function of the redshift z over the entire cosmological evolution, i.e., z is an element of [-1, infinity). By using a theoretical algorithm of constructing the quintes-sence potential directly from the w(z) function, we derive and discuss the general features of the resulting potential for the cases in which dark energy is separately conserved and when it is coupled to dark matter. Since the parameterization here discussed allows us to divide the parametric plane in defined regions associated to distinct classes of dark energy models, we use some of the most recent observations from type Ia supernovae, baryon acoustic oscillation peak and Cosmic Microwave Background shift parameter to check which class is observationally preferred. We show that the largest portion of the confidence contours lies into the region corresponding to a possible crossing of the so-called phantom divide line at some point of the cosmic evolution.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An analogue of the Newton-Wigner position operator is defined for a massive neutral scalar field in de Sitter space. The one-particle subspace of the theory, consisting of positive-energy solutions of the Klein-Gordon equation selected by the Hadamard condition, is identified with an irreducible representation of the de Sitter group. Postulates of localizability analogous to those written by Wightman for fields in Minkowski space are formulated on it, and a unique solution is shown to exist. Representations in both the principal and the complementary series are considered. A simple expression for the time evolution of the Newton-Wigner operator is presented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We discuss two Lagrangian interacting dark energy models in the context of the holographic principle. The potentials of the interacting fields are constructed. The models are compared with CMB distance information, baryonic acoustic oscillations, lookback time and the Constitution supernovae sample. For both models, the results are consistent with a nonvanishing interaction in the dark sector of the Universe and the sign of coupling is consistent with dark energy decaying into dark matter, alleviating the coincidence problem-with more than 3 standard deviations of confidence for one of them. However, this is because the noninteracting holographic dark energy model is a bad fit to the combination of data sets used in this work as compared to the cosmological constant with cold dark matter model, so that one needs to introduce the interaction in order to improve this model.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

With the possible exception of meteor impacts, high-energy astrophysical events such as supernovae, gamma-ray bursts (GRB) and flares are usually not taken into account for biological and evolutionary studies due to their low rates of occurrence. We show that a class of these events may occur at distances and time scales in which their biological effects are non-negligible, maybe more frequent than the impacts of large asteroids. We review the effects of four transient astrophysical sources of ionizing radiation on biospheres - stellar flares, giant flares from soft gamma repeaters (SGR), supernovae and GRB. The main damaging features of them are briefly discussed and illustrated. We point out some open problems and ongoing work. Received 28 February 2012, accepted 6 July 2012, first published online 10 August 2012

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The current cosmological dark sector (dark matter plus dark energy) is challenging our comprehension about the physical processes taking place in the Universe. Recently, some authors tried to falsify the basic underlying assumptions of such dark matterdark energy paradigm. In this Letter, we show that oversimplifications of the measurement process may produce false positives to any consistency test based on the globally homogeneous and isotropic ? cold dark matter (?CDM) model and its expansion history based on distance measurements. In particular, when local inhomogeneity effects due to clumped matter or voids are taken into account, an apparent violation of the basic assumptions (Copernican Principle) seems to be present. Conversely, the amplitude of the deviations also probes the degree of reliability underlying the phenomenological DyerRoeder procedure by confronting its predictions with the accuracy of the weak lensing approach. Finally, a new method is devised to reconstruct the effects of the inhomogeneities in a ?CDM model, and some suggestions of how to distinguish between clumpiness (or void) effects from different cosmologies are discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We discuss the gravitational collapse of a spherically symmetric massive core of a star in which the fluid component is interacting with a growing vacuum energy density. The influence of the variable vacuum in the collapsing core is quantified by a phenomenological beta parameter as predicted by dimensional arguments and the renormalization group approach. For all reasonable values of this free parameter, we find that the vacuum energy density increases the collapsing time, but it cannot prevent the formation of a singular point. However, the nature of the singularity depends on the value of beta. In the radiation case, a trapped surface is formed for beta <= 1/2, whereas for beta >= 1/2, a naked singularity is developed. In general, the critical value is beta = 1-2/3(1 + omega) where omega is the parameter describing the equation of state of the fluid component.