20 resultados para SUN: FUNDAMENTAL PARAMETERS

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Solar infrared colors provide powerful constraints on the stellar effective temperature scale, but they must be measured with both accuracy and precision in order to do so. We fulfill this requirement by using line-depth ratios to derive in a model-independent way the infrared colors of the Sun, and we use the latter to test the zero point of the Casagrande et al. effective temperature scale, confirming its accuracy. Solar colors in the widely used Two Micron All Sky Survey (2MASS) JHK(s) and WISE W1-4 systems are provided: (V - J)(circle dot) = 1.198, (V - H)(circle dot) = 1.484, (V - K-s)(circle dot) = 1.560, (J - H)(circle dot) = 0.286, (J - K-s)(circle dot) = 0.362, (H - K-s)(circle dot) = 0.076, (V - W1)(circle dot) = 1.608, (V - W2)(circle dot) = 1.563, (V - W3)(circle dot) = 1.552, and (V - W4)(circle dot) = 1.604. A cross-check of the effective temperatures derived implementing 2MASS or WISE magnitudes in the infrared flux method confirms that the absolute calibration of the two systems agrees within the errors, possibly suggesting a 1% offset between the two, thus validating extant near-and mid-infrared absolute calibrations. While 2MASS magnitudes are usually well suited to derive T-eff, we find that a number of bright, solar-like stars exhibit anomalous WISE colors. In most cases, this effect is spurious and can be attributed to lower-quality measurements, although for a couple of objects (3%+/- 2% of the total sample) it might be real, and may hint at the presence of warm/hot debris disks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Photometric data in the UBV(RI)(C) system have been acquired for 80 solar analog stars for which we have previously derived highly precise atmospheric parameters T-eff, log g, and [Fe/H] using high-resolution, high signal-to-noise ratio spectra. UBV and (RI)(C) data for 46 and 76 of these stars, respectively, are published for the first time. Combining our data with those from the literature, colors in the UBV(RI) C system, with similar or equal to 0.01 mag precision, are now available for 112 solar analogs. Multiple linear regression is used to derive the solar colors from these photometric data and the spectroscopically derived T-eff, log g, and [Fe/H] values. To minimize the impact of systematic errors in the model-dependent atmospheric parameters, we use only the data for the 10 stars that most closely resemble our Sun, i.e., the solar twins, and derive the following solar colors: (B - V)(circle dot) = 0.653 +/- 0.005, (U - B)(circle dot) = 0.166 +/- 0.022, (V - R)(circle dot) = 0.352 +/- 0.007, and (V - I)(circle dot) = 0.702 +/- 0.010. These colors are consistent, within the 1 sigma errors, with those derived using the entire sample of 112 solar analogs. We also derive the solar colors using the relation between spectral-line-depth ratios and observed stellar colors, i.e., with a completely model-independent approach, and without restricting the analysis to solar twins. We find (B - V)(circle dot) = 0.653 +/- 0.003, (U - B)(circle dot) = 0.158 +/- 0.009, (V - R)(circle dot) = 0.356 +/- 0.003, and (V - I)(circle dot) = 0.701 +/- 0.003, in excellent agreement with the model-dependent analysis.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Context. The Sun shows abundance anomalies relative to most solar twins. If the abundance peculiarities are due to the formation of inner rocky planets, that would mean that only a small fraction of solar type stars may host terrestrial planets. Aims. In this work we study HIP 56948, the best solar twin known to date, to determine with an unparalleled precision how similar it is to the Sun in its physical properties, chemical composition and planet architecture. We explore whether the abundances anomalies may be due to pollution from stellar ejecta or to terrestrial planet formation. Methods. We perform a differential abundance analysis (both in LTE and NLTE) using high resolution (R similar to 100 000) high S/N (600-650) Keck HIRES spectra of the Sun (as reflected from the asteroid Ceres) and HIP 56948. We use precise radial velocity data from the McDonald and Keck observatories to search for planets around this star. Results. We achieve a precision of sigma less than or similar to 0.003 dex for several elements. Including errors in stellar parameters the total uncertainty is as low as sigma similar or equal to 0.005 dex (1%), which is unprecedented in elemental abundance studies. The similarities between HIP 56948 and the Sun are astonishing. HIP 56948 is only 17 +/- 7 K hotter than the Sun, and log g, [Fe/H] and microturbulence velocity are only +0.02 +/- 0.02 dex, +0.02 +/- 0.01 dex and +0.01 +/- 0.01 km s(-1) higher than solar, respectively. Our precise stellar parameters and a differential isochrone analysis shows that HIP 56948 has a mass of 1.02 +/- 0.02 M-circle dot and that it is similar to 1 Gyr younger than the Sun, as constrained by isochrones, chromospheric activity, Li and rotation. Both stars show a chemical abundance pattern that differs from most solar twins, but the refractory elements (those with condensation temperature T-cond greater than or similar to 1000 K) are slightly (similar to 0.01 dex) more depleted in the Sun than in HIP 56948. The trend with T-cond in differential abundances (twins -HIP 56948) can be reproduced very well by adding similar to 3 M-circle plus of a mix of Earth and meteoritic material, to the convection zone of HIP 56948. The element-to-element scatter of the Earth/meteoritic mix for the case of hypothetical rocky planets around HIP 56948 is only 0.0047 dex. From our radial velocity monitoring we find no indications of giant planets interior to or within the habitable zone of HIP 56948. Conclusions. We conclude that HIP 56948 is an excellent candidate to host a planetary system like our own, including the possible presence of inner terrestrial planets. Its striking similarity to the Sun and its mature age makes HIP 56948 a prime target in the quest for other Earths and SETI endeavors.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We present results from an analysis of stellar population parameters for 7132 galaxies in the 6dF Galaxy Survey Fundamental Plane (FP) sample. We bin the galaxies along the axes, v1, v2 and v3, of the tri-variate Gaussian to which we have fitted the galaxy distribution in effective radius, surface brightness and central velocity dispersion (FP space), and compute median values of stellar age, [Fe/H], [Z/H] and [a/Fe]. We determine the directions of the vectors in FP space along which each of the binned stellar population parameters vary most strongly. In contrast to previous work, we find stellar population trends not just with velocity dispersion and FP residual, but with radius and surface brightness as well. The most remarkable finding is that the stellar population parameters vary through the plane (v1 direction) and across the plane (v3 direction), but show no variation at all along the plane (v2 direction). The v2 direction in FP space roughly corresponds to luminosity density. We interpret a galaxys position along this vector as being closely tied to its merger history, such that early-type galaxies with lower luminosity density are more likely to have undergone major mergers. This conclusion is reinforced by an examination of the simulations of Kobayashi, which show clear trends of merger history with v2.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Context. Spectrally resolved long-baseline optical/IR interferometry of rotating stars opens perspectives to investigate their fundamental parameters and the physical mechanisms that govern their interior, photosphere, and circumstellar envelope structures. Aims. Based on the signatures of stellar rotation on observed interferometric wavelength-differential phases, we aim to measure angular diameters, rotation velocities, and orientation of stellar rotation axes. Methods. We used the AMBER focal instrument at ESO-VLTI in its high-spectral resolution mode to record interferometric data on the fast rotator Achernar. Differential phases centered on the hydrogen Br gamma line (K band) were obtained during four almost consecutive nights with a continuous Earth-rotation synthesis during similar to 5h/night, corresponding to similar to 60 degrees position angle coverage per baseline. These observations were interpreted with our numerical code dedicated to long-baseline interferometry of rotating stars. Results. By fitting our model to Achernar's differential phases from AMBER, we could measure its equatorial radius R-eq = 11.6 +/- 0.3 R-circle dot, equatorial rotation velocity V-eq = 298 +/- 9 km s(-1), rotation axis inclination angle i = 101.5 +/- 5.2 degrees, and rotation axis position angle (from North to East) PA(rot) = 34.9 +/- 1.6 degrees. From these parameters and the stellar distance, the equatorial angular diameter circle divide(eq) of Achernar is found to be 2.45 +/- 0.09 mas, which is compatible with previous values derived from the commonly used visibility amplitude. In particular, circle divide(eq) and PA(rot) measured in this work with VLTI/AMBER are compatible with the values previously obtained with VLTI/VINCI. Conclusions. The present paper, based on real data, demonstrates the super-resolution potential of differential interferometry for measuring sizes, rotation velocities, and orientation of rotating stars in cases where visibility amplitudes are unavailable and/or when the star is partially or poorly resolved. In particular, we showed that differential phases allow the measurement of sizes up to similar to 4 times smaller than the diffraction-limited angular resolution of the interferometer.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We present a study of the stellar parameters and iron abundances of 18 giant stars in six open clusters. The analysis was based on high-resolution and high-S/N spectra obtained with the UVES spectrograph (VLT-UT2). The results complement our previous study where 13 clusters were already analyzed. The total sample of 18 clusters is part of a program to search for planets around giant stars. The results show that the 18 clusters cover a metallicity range between -0.23 and +0.23 dex. Together with the derivation of the stellar masses, these metallicities will allow the metallicity and mass effects to be disentangled when analyzing the frequency of planets as a function of these stellar parameters.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We report the detection of CoRoT-23b, a hot Jupiter transiting in front of its host star with a period of 3.6314 +/- 0.0001 days. This planet was discovered thanks to photometric data secured with the CoRoT satellite, combined with spectroscopic radial velocity (RV) measurements. A photometric search for possible background eclipsing binaries conducted at CFHT and OGS concluded with a very low risk of false positives. The usual techniques of combining RV and transit data simultaneously were used to derive stellar and planetary parameters. The planet has a mass of M-p = 2.8 +/- 0.3 M-Jup, a radius of R-pl = 1.05 +/- 0.13 R-Jup, a density of approximate to 3 gcm(-3). RV data also clearly reveal a nonzero eccentricity of e = 0.16 +/- 0.02. The planet orbits a mature G0 main sequence star of V = 15.5 mag, with a mass M-star = 1.14 +/- 0.08 M-circle dot, a radius R-star = 1. 61 +/- 0.18 R-circle dot and quasi-solar abundances. The age of the system is evaluated to be 7 Gyr, not far from the transition to subgiant, in agreement with the rather large stellar radius. The two features of a significant eccentricity of the orbit and of a fairly high density are fairly uncommon for a hot Jupiter. The high density is, however, consistent with a model of contraction of a planet at this mass, given the age of the system. On the other hand, at such an age, circularization is expected to be completed. In fact, we show that for this planetary mass and orbital distance, any initial eccentricity should not totally vanish after 7 Gyr, as long as the tidal quality factor Q(p) is more than a few 10(5), a value that is the lower bound of the usually expected range. Even if CoRoT-23b features a density and an eccentricity that are atypical of a hot Jupiter, it is thus not an enigmatic object.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We analyse the dependence of the luminosity function (LF) of galaxies in groups on group dynamical state. We use the Gaussianity of the velocity distribution of galaxy members as a measurement of the dynamical equilibrium of groups identified in the Sloan Digital Sky Survey Data Release 7 by Zandivarez & Martinez. We apply the Anderson-Darling goodness-of-fit test to distinguish between groups according to whether they have Gaussian or non-Gaussian velocity distributions, i.e. whether they are relaxed or not. For these two subsamples, we compute the (0.1)r-band LF as a function of group virial mass and group total luminosity. For massive groups, , we find statistically significant differences between the LF of the two subsamples: the LFs of groups that have Gaussian velocity distributions have a brighter characteristic absolute magnitude (similar to 0.3 mag) and a steeper faint-end slope (similar to 0.25). We detect a similar effect when comparing the LF of bright [M-0.1r(group) - 5log(h) < -23.5] Gaussian and non-Gaussian groups. Our results indicate that, for massive/luminous groups, the dynamical state of the system is directly related to the luminosity of its galaxy members.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Aims. We report the discovery of CoRoT-16b, a low density hot jupiter that orbits a faint G5V star (mV = 15.63) in 5.3523 +/- 0.0002 days with slight eccentricity. A fit of the data with no a priori assumptions on the orbit leads to an eccentricity of 0.33 +/- 0.1. We discuss this value and also derive the mass and radius of the planet. Methods. We analyse the photometric transit curve of CoRoT-16 given by the CoRoT satellite, and radial velocity data from the HARPS and HIRES spectrometers. A combined analysis using a Markov chain Monte Carlo algorithm is used to get the system parameters. Results. CoRoT-16b is a 0.535 -0.083/+0.085 M-J, 1.17 -0.14/+0.16 R-J hot Jupiter with a density of 0.44 -0.14/+0.21 g cm(-3). Despite its short orbital distance (0.0618 +/- 0.0015 AU) and the age of the parent star (6.73 +/- 2.8 Gyr), the planet orbit exhibits significantly non-zero eccentricity. This is very uncommon for this type of objects as tidal effects tend to circularise the orbit. This value is discussed taking into account the characteristics of the star and the observation accuracy.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

VISTA Variables in the Via Lactea (VVV) is an ESO variability survey that is performing observations in near-infrared bands (ZY JHK(s)) toward the Galactic bulge and part of the disk with the completeness limits at least 3 mag deeper than Two Micron All Sky Survey. In the present work, we searched in the VVV survey data for background galaxies near the Galactic plane using ZY JHK(s) photometry that covers 1.636 deg(2). We identified 204 new galaxy candidates by analyzing colors, sizes, and visual inspection of multi-band (ZY JHK(s)) images. The galaxy candidate colors were also compared with the predicted ones by star count models considering a more realistic extinction model at the same completeness limits observed by VVV. A comparison of the galaxy candidates with the expected one by Millennium simulations is also presented. Our results increase the number density of known galaxies behind the Milky Way by more than one order of magnitude. A catalog with galaxy properties including ellipticity, Petrosian radii, and ZY JHK(s) magnitudes is provided, as well as comparisons of the results with other surveys of galaxies toward the Galactic plane.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The aim of this work is to derive precise reddenings for 31 Cepheids using multiphase high-resolution spectroscopic observations and literature-derived colors. Each individual reddening value was determined as a difference between the observed (B - V) value and a calculated (B - V) value based on Castelli stellar model atmospheres and atmosphere parameters (effective temperature and gravity) previously determined through high-resolution spectroscopic analysis. This procedure was repeated for all pulsational phases at which spectra were obtained (typically 11 spectra for each star). After that, the mean reddening value for a given Cepheid was obtained. The reddening values derived were compared to values based on the use of distances and multiband photometry, reaching the general conclusion that reddening derived in this manner agrees with those from other methods.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Aims. Several embedded clusters are found in the Galaxy. Depending on the formation scenario, most of them can evolve to unbounded groups that are dissolved within 10 Myr to 20 Myr. A systematic study of young stellar clusters that show distinct characteristics provides interesting information on the evolutionary phases during the pre-main sequence. To identify and to understand these phases we performed a comparative study of 21 young stellar clusters. Methods. Near-infrared data from 2MASS were used to determine the structural and fundamental parameters based on surface stellar density maps, radial density profile, and colour-magnitude diagrams. The cluster members were selected according to their membership probability, which is based on the statistical comparison with the cluster proper motion. Additional members were selected on the basis of a decontamination procedure that was adopted to distinguish field stars found in the direction of the cluster area. Results. We obtained age and mass distributions by comparing pre-main sequence models with the position of cluster members in the colour-magnitude diagram. The mean age of our sample is similar to 5 Myr, where 57% of the objects is found in the 4-10 Myr range of age, while 43% is <4 Myr old. Their low E(B - V) indicate that the members are not suffering high extinction (AV <1 mag), which means they are more likely young stellar groups than embedded clusters. Relations between structural and fundamental parameters were used to verify differences and similarities that could be found among the clusters. The parameters of most of the objects show the same trends or correlations. Comparisons with other young clusters show similar relations among mass, radius, and density. Our sample tends to have larger radius and lower volumetric density than embedded clusters. These differences are compatible with the mean age of our sample, which we consider intermediate between the embedded and the exposed phases of the stellar clusters evolution.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We report the discovery by the CoRoT space mission of a new giant planet, CoRoT-20b. The planet has a mass of 4.24 +/- 0.23 M-Jup and a radius of 0.84 +/- 0.04 R-Jup. With a mean density of 8.87 +/- 1.10 g cm(-3), it is among the most compact planets known so far. Evolutionary models for the planet suggest a mass of heavy elements of the order of 800 M-circle plus if embedded in a central core, requiring a revision either of the planet formation models or both planet evolution and structure models. We note however that smaller amounts of heavy elements are expected by more realistic models in which they are mixed throughout the envelope. The planet orbits a G-type star with an orbital period of 9.24 days and an eccentricity of 0.56. The star's projected rotational velocity is v sin i = 4.5 +/- 1.0 km s(-1), corresponding to a spin period of 11.5 +/- 3.1 days if its axis of rotation is perpendicular to the orbital plane. In the framework of Darwinian theories and neglecting stellar magnetic breaking, we calculate the tidal evolution of the system and show that CoRoT-20b is presently one of the very few Darwin-stable planets that is evolving toward a triple synchronous state with equality of the orbital, planetary and stellar spin periods.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Be stars are known to be fast rotators. At high rotation rates a profound modification of the radiation field reaching the circumstellar environment is expected. The origin of this modification is the decrease of the effective gravity on stellar surface leading to the stellar geometrical flattening and the gravity darkening effect predicted by Von Zeipel. Making use of the radiative transfer code HDUST we discuss the consequences of such stellar rotation on the structure of Be star disks based on the Viscous Decretion Disk model. Observational predictions are also made, as SED, IR-excess and Hydrogen line profiles. The modified illumination of the circumstellar disk generates significant changes in these quantities. Ascertaining these changes is useful to set some of the fundamental parameters of the Be system and to unveil the role of stellar rotation over the stellar evolution.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We investigate the nature of extremely red galaxies (ERGs), objects whose colours are redder than those found in the red sequence present in colour–magnitude diagrams of galaxies. We selected from the Sloan Digital Sky Survey Data Release 7 a volume-limited sample of such galaxies in the redshift interval 0.010 < z < 0.030, brighter than Mr = −17.8 (magnitudes dereddened, corrected for the Milky Way extinction) and with (g − r) colours larger than those of galaxies in the red sequence. This sample contains 416 ERGs, which were classified visually. Our classification was cross-checked with other classifications available in the literature. We found from our visual classification that the majority of objects in our sample are edge-on spirals (73 per cent). Other spirals correspond to 13 per cent, whereas elliptical galaxies comprise only 11 per cent of the objects. After comparing the morphological mix and the distributions of Hα/Hβ and axial ratios of ERGs and objects in the red sequence, we suggest that dust, more than stellar population effects, is the driver of the red colours found in these extremely red galaxies.