2 resultados para STRUCTURAL ADAPTATIONS
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Cunha TF, Moreira JB, Paixao NA, Campos JC, Monteiro AW, Bacurau AV, Bueno CR Jr., Ferreira JC, Brum PC. Aerobic exercise training upregulates skeletal muscle calpain and ubiquitin-proteasome systems in healthy mice. J Appl Physiol 112: 1839-1846, 2012. First published March 29, 2012; doi:10.1152/japplphysiol.00346.2011.-Aerobic exercise training (AET) is an important mechanical stimulus that modulates skeletal muscle protein turnover, leading to structural rearrangement. Since the ubiquitin-proteasome system (UPS) and calpain system are major proteolytic pathways involved in protein turnover, we aimed to investigate the effects of intensity-controlled AET on the skeletal muscle UPS and calpain system and their association to training-induced structural adaptations. Long-lasting effects of AET were studied in C57BL/6J mice after 2 or 8 wk of AET. Plantaris cross-sectional area (CSA) and capillarization were assessed by myosin ATPase staining. mRNA and protein expression levels of main components of the UPS and calpain system were evaluated in plantaris by real-time PCR and Western immunoblotting, respectively. No proteolytic system activation was observed after 2 wk of AET. Eight weeks of AET resulted in improved running capacity, plantaris capillarization, and CSA. Muscle RING finger-1 mRNA expression was increased in 8-wk-trained mice. Accordingly, elevated 26S proteasome activity was observed in the 8-wk-trained group, without accumulation of ubiquitinated or carbonylated proteins. In addition, calpain abundance was increased by 8 wk of AET, whereas no difference was observed in its endogenous inhibitor calpastatin. Taken together, our findings indicate that skeletal muscle enhancements, as evidenced by increased running capacity, plantaris capillarization, and CSA, occurred in spite of the upregulated UPS and calpain system, suggesting that overactivation of skeletal muscle proteolytic systems is not restricted to atrophying states. Our data provide evidence for the contribution of the UPS and calpain system to metabolic turnover of myofibrillar proteins and skeletal muscle adaptations to AET.
Resumo:
Contents Among the modifications that occur during the neonatal period, pulmonary development is the most critical. The neonate's lungs must be able to perform adequate gas exchange, which was previously accomplished by the placenta. Neonatal respiratory distress syndrome is defined as insufficient surfactant production or pulmonary structural immaturity and is specifically relevant to preterm newborns. Prenatal maternal betamethasone treatment of bitches at 55days of gestation leads to structural changes in the neonatal lung parenchyma and consequently an improvement in the preterm neonatal respiratory condition, but not to an increase in pulmonary surfactant production. Parturition represents an important challenge to neonatal adaptation, as the uterine and abdominal contractions during labour provoke intermittent hypoxia. Immediately after birth, puppies present venous mixed acidosis (low blood pH and high dioxide carbon saturation) and low but satisfactory Apgar scores. Thus, the combination of physiological hypoxia during birth and the initial effort of filling the pulmonary alveoli with oxygen results in anaerobiosis. As a neonatal adaptation follow-up, the Apgar analysis indicates a tachypnoea response after 1h of life, which leads to a shift in the blood acidbase status to metabolic acidosis. One hour is sufficient for canine neonates to achieve an ideal Apgar score; however, a haemogasometric imbalance persists. Dystocia promotes a long-lasting bradycardia effect, slows down Apgar score progression and aggravates metabolic acidosis and stress. The latest data reinforce the need to accurately intervene during canine parturition and offer adequate medical treatment to puppies that underwent a pathological labour.