34 resultados para STREPTOZOTOCIN-TREATED RAT

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Neurodegenerative disorders are undoubtedly an increasing problem in the health sciences, given the increase of life expectancy and occasional vicious life style. Despite the fact that the mechanisms of such diseases are far from being completely understood, a large number of studies; that derive from both the basic science and clinical approaches have contributed substantial data in that direction. In this review, it is discussed several frontiers of basic research on Parkinson's and Alzheimer's diseases, in which research groups from three departments of the Institute of Biomedical Sciences of the University of Sao Paulo have been involved in a multidisciplinary effort. The main focus of the review involves the animal models that have been developed to study cellular and molecular aspects of those neurodegenerative diseases, including oxidative stress, insulin signaling and proteomic analyses, among others. We anticipate that this review will help the group determine future directions of joint research in the field and, more importantly, set the level of cooperation we plan to develop in collaboration with colleagues of the Nucleus for Applied Neuroscience Research that are mostly involved with clinical research in the same field.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Glucose metabolism and insulin signaling disruptions in the brain have been proposed as a likely etiology of Alzheimer's disease. The aim of the present study was to investigate the time course of cognitive impairments induced by intracerebroventricular injection of streptozotocin (STZ) in rats and correlate them with the ensuing neurodegenerative process. Early and late effects of STZ were evaluated by using the reference and working memory versions of the Morris' water maze task and the evaluation of neurodegenerative markers by immunoblotting and the Fluoro-jade C histochemistry. The results revealed different types of behavioral and neurodegenerative responses, with distinct time courses. We observed an early disruption on the working memory as early as 3 h after STZ injections, which was followed by degenerative processes in the hippocampus at 1 and 15 days after STZ injections. Memory disruption increases over time and culminates with significant changes in amyloid-beta peptide and hyperphosphorylated Tau protein levels in distinct brain structures. These findings add information on the Alzheimer's disease-like STZ animal model and on the mechanisms underlying neurodegenerative processes. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Abstract Background Pituitary tumor transforming gene (pttg) is a novel oncogene that is expressed at higher level in most of the tumors analyzed to date compared to normal tissues. Nevertheless, its expression in prolactinomas and its relation with the pituitary dopamine receptor 2 (D2R) are not well defined. We sought to determine the pituitary level of pttg in three different experimental models of prolactinomas with altered dopaminergic control of the pituitary: the dopaminergic D2R knockout female mouse, the estrogen-treated rat, and the senescent female rat. These three models shared the characteristics of increased pituitary weight, hyperprolactinemia, lactotrope hyperplasia and reduced or absent dopaminergic action at the pituitary level. We also studied samples from human macroprolactinomas, which were characterized as responsive or resistant to dopamine agonist therapy. Results When compared to female wild-type mice, pituitaries from female D2R knockout mice had decreased PTTG concentration, while no difference in pttg mRNA level was found. In senescent rats no difference in pituitary PTTG protein expression was found when compared to young rats. But, in young female rats treated with a synthetic estrogen (Diethylstylbestrol, 20 mg) PTTG protein expression was enhanced (P = 0.029). Therefore, in the three experimental models of prolactinomas, pituitary size was increased and there was hyperprolactinemia, but PTTG levels followed different patterns. Patients with macroprolactinomas were divided in those in which dopaminergic therapy normalized or failed to normalize prolactin levels (responsive and resistant, respectively). When pituitary pttg mRNA level was analyzed in these macroprolactinomas, no differences were found. We next analyzed estrogen action at the pituitary by measuring pituitary estrogen receptor α levels. The D2R knockout female mice have low estrogen levels and in accordance, pituitary estrogen receptors were increased (P = 0.047). On the other hand, in senescent rats estrogen levels were slightly though not significantly higher, and estrogen receptors were similar between groups. The estrogen-treated rats had high pharmacological levels of the synthetic estrogen, and estrogen receptors were markedly lower than in controls (P < 0.0001). Finally, in patients with dopamine resistant or responsive prolactinomas no significant differences in estrogen receptor α levels were found. Therefore, pituitary PTTG was increased only if estrogen action was increased, which correlated with a decrease in pituitary estrogen receptor level. Conclusion We conclude that PTTG does not correlate with prolactin levels or tumor size in animal models of prolactinoma, and its pituitary content is not related to a decrease in dopaminergic control of the lactotrope, but may be influenced by estrogen action at the pituitary level. Therefore it is increased only in prolactinomas generated by estrogen treatment, and not in prolactinomas arising from deficient dopamine control, or in dopamine resistant compared with dopamine responsive human prolactinomas. These results are important in the search for reliable prognostic indicators for patients with pituitary adenomas which will make tumor-specific therapy possible, and help to elucidate the poorly understood phenomenon of pituitary tumorigenesis.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The modulation played by reactive oxygen species on the angiotensin II-induced contraction in type I-diabetic rat carotid was investigated. Concentration-response curves for angiotensin II were obtained in endothelium-intact or endothelium-denuded carotid from control or streptozotocin-induced diabetic rats, pre-treated with tiron (superoxide scavenger), PEG-catalase (hydrogen peroxide scavenger), dimethylthiourea (hydroxyl scavenger), apocynin [NAD(P) H oxidase inhibitor], SC560 (cyclooxygenase-1 inhibitor), SC236 (cyclooxygenase-2 inhibitor) or Y-27632 (Rho-kinase inhibitor). Reactive oxygen species were measured by flow cytometry in dihydroethidium (DHE)-loaded endothelial cells. Cyclooxygenase and AT1-receptor expression was assessed by immunohistochemistry. Diabetes increased the angiotensin II-induced contraction but reduced the agonist potency in rat carotid. Endothelium removal, tiron or apocynin restored the angiotensin II-induced contraction in diabetic rat carotid to control levels. PEG-catalase, DMTU or SC560 reduced the angiotensin II-induced contraction in diabetic rat carotid at the same extent. SC236 restored the angiotensin II potency in diabetic rat carotid. Y-27632 reduced the angiotensin II-induced contraction in endothelium-intact or -denuded diabetic rat carotid. Diabetes increased the DHE-fluorescence of carotid endothelial cells. Apocynin reduced the DHE-fluorescence of endothelial cells from diabetic rat carotid to control levels. Diabetes increased the muscular cyclooxygenase-2 expression but reduced the muscular AT1-receptor expression in rat carotid. In summary, hydroxyl radical, hydrogen peroxide and superoxide anion-derived from endothelial NAD(P) H oxidase mediate the hyperreactivity to angiotensin II in type I-diabetic rat carotid, involving the participation of cyclooxygenase-1 and Rho-kinase. Moreover, increased muscular cyclooxygenase-2 expression in type I-diabetic rat carotid seems to be related to the local reduced AT1-receptor expression and the reduced angiotensin II potency. (C) 2011 Elsevier B. V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study investigated whether perinatal exposure to picrotoxin, a GABA(A) antagonist, modifies the effect of muscimol, a GABA(A) agonist, on the sexual behavior of adult male rats. Two hours after birth and then once daily during the next 9 days of lactation, dams received picrotoxin (0.75 mg/kg subcutaneously) or saline (1 ml/kg subcutaneously). The adult male offspring from the picrotoxin and saline groups received saline (1 ml/kg intraperitoneally) or muscimol (1 mg/kg intraperitoneally), and 15 min later, their sexual behavior was assessed. Muscimol treatment in the saline-exposed group increased the mount and intromission latencies. However, these effects were absent in the picrotoxin-exposed groups. The latencies to first ejaculation, postejaculatory mount, and intromission were decreased in both picrotoxin-exposed groups relative to the saline-exposed groups. The picrotoxin + muscimol-treated rats required more intromissions to ejaculate and the picrotoxin-exposed groups made more ejaculations than the saline-exposed groups. Thus, muscimol treatment did not increase the mount and intromission latencies following picrotoxin exposure, but increased the ejaculation frequency, which did not differ between the picrotoxin + muscimol and the picrotoxin + saline groups. These data indicate that perinatal picrotoxin treatment interfered with GABA(A) receptor development Behavioural Pharmacology 23:703-709 (c) 2012 Wolters Kluwer Health vertical bar Lippincott Williams & Wilkins.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Context: Neolignans are usually dimers formed by oxidative coupling of allyl and propenyl phenols, and the neolignan analogue, 2-phenoxy-1-phenylethanone (LS-2) is a promising antimycobacterial compound showing very weak cytotoxicity in mammalian cells and lack of acute toxicity in murine models. Objectives: To investigate the mechanism of action of LS-2 in rat hepatocytes by evaluating the activity levels of enzymes related to oxidation status and drug-metabolizing activity. Materials and methods: Hepatocytes were treated with LS-2 from 0.05 up to 1 mM, for 24 and 48 h, and reduced glutathione (GSH), lipid peroxidation and cytochrome P450 enzyme (CYP450) activity were assayed. A homologous series of phenoxazone ethers were used as substrates to measure the enzymatic profile. The biotransformation of LS-2 was studied in hepatocytes by gas chromatography-mass spectrometry (GC-MS) for detection and analysis of possible metabolites. Results: Hepatocytes treated with LS-2 up to 1 mM for 24 or 48 h did not induce the formation of GSH and lipid peroxidation. O-Dealkylation activities of the isoenzymes CYP4501A1, CYP4501A2, CYP4502B1 and CYP4502B2 were also not detected in the hepatocytes treated with LS-2 for 24 or 48 h. Discussion and conclusion: The results indicate that LS-2 or its two detected metabolites, 2-phenoxy-1-phenylethanol and 2,4-(2-hydroxy-2-phenylethoxy) phenol, are not cytotoxic to rat hepatocytes. These compounds maintain a balance between the production of pro-oxidant agents and their respective antioxidant systems. The data show that enzymes related to oxidation status and drug-metabolizing activities are not involved in the mechanism of action of LS-2.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Glucose transporter 4 (GLUT4) is highly expressed in muscle and fat tissue, where triiodothyronine (T-3) induces solute carrier family 2 facilitated glucose transporter member 4 (SLC2A4) gene transcription. T-3 was also shown to rapidly increase glucose uptake in myocytes exposed to cycloheximide, indicating that it might act nongenomically to regulate GLUT4 availability. We tested this hypothesis by evaluating, in thyroidectomized rats (Tx rats), the acute and/or chronic T-3 effects on GLUT4 mRNA expression and polyadenylation, protein content, and trafficking to the plasma membrane (PM) in skeletal muscle, as well as on blood glucose disappearance rate (kITT) after insulin administration. Methods: Rats were surgically thyroidectomized and treated with T-3 (0.3 to 100 mu g/100 g body weight) from 10 minutes to 5 days, and killed thereafter. Sham-operated (SO) rats were used as controls. Total RNA was extracted from the skeletal muscles (soleus [SOL] and extensorum digitalis longus [EDL]) and subjected to Northern blotting analysis using rat GLUT4 cDNA probe. Total protein was extracted and subjected to specific centrifugations for subcellular fractionation, and PM as well as microsomal (M) fractions were subjected to Western blotting analysis, using anti-GLUT4 antiserum as a probe. GLUT4 mRNA polyadenylation was examined by a rapid amplification of cDNA ends-poly(A) test (RACE-PAT). Results: Thyroidectomy reduced skeletal muscle GLUT4 mRNA, mRNA poly(A) tail length, protein content, and trafficking to the PM, as well as the kITT. The acute T-3 treatment rapidly (30 minutes) increased all these parameters compared with Tx rats. The 5-day T-3 treatment increased GLUT4 mRNA and protein expression, and restored GLUT4 trafficking to the PM and kITT to SO values. Conclusions: The results presented here show for the first time that, in parallel to its transcriptional action on the SLC2A4 gene, T-3 exerts a rapid post-transcriptional effect on GLUT4 mRNA polyadenylation, which might increase transcript stability and translation efficiency, leading to the increased GLUT4 content and availability to skeletal muscle, as well as on GLUT4 translocation to the PM, improving the insulin sensitivity, as shown by the kITT.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ethanol intake is associated with increase in blood pressure, through unknown mechanisms. We hypothesized that acute ethanol intake enhances vascular oxidative stress and induces vascular dysfunction through renin-angiotensin system (RAS) activation. Ethanol (1 g/kg; p.o. gavage) effects were assessed within 30 min in male Wistar rats. The transient decrease in blood pressure induced by ethanol was not affected by the previous administration of losartan (10 mg/kg; p.o. gavage), a selective ATI receptor antagonist. Acute ethanol intake increased plasma renin activity (PRA), angiotensin converting enzyme (ACE) activity, plasma angiotensin I (ANG I) and angiotensin II (ANG II) levels. Ethanol induced systemic and vascular oxidative stress, evidenced by increased plasma thiobarbituric acid-reacting substances (TBARS) levels, NAD(P) H oxidase-mediated vascular generation of superoxide anion and p47phox translocation (cytosol to membrane). These effects were prevented by losartan. Isolated aortas from ethanol-treated rats displayed increased p38MAPK and SAPK/JNK phosphorylation. Losartan inhibited ethanol-induced increase in the phosphorylation of these kinases. Ethanol intake decreased acetylcholine-induced relaxation and increased phenylephrine-induced contraction in endothelium-intact aortas. Ethanol significantly decreased plasma and aortic nitrate levels. These changes in vascular reactivity and in the end product of endogenous nitric oxide metabolism were not affected by losartan. Our study provides novel evidence that acute ethanol intake stimulates RAS activity and induces vascular oxidative stress and redox-signaling activation through AT(1)-dependent mechanisms. These findings highlight the importance of RAS in acute ethanol-induced oxidative damage. (c) 2012 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Type 2 diabetes mellitus implies deregulation of multiple metabolic processes, being the maintenance of glycemia one of the most important. Many genes are involved in the deregulation of this particular process. Therefore, the aim of this study was to evaluate gene expression of genes related to type 2 diabetes mellitus, in the liver and pancreas of rats with hyperglycemia induced by high fat diet along with a low single dose of streptozotocin. Ahsg and Ppargc1a genes were studied in liver, whereas Kcnj11 and Slc2a2 genes were analyzed in pancreas. For this purpose, 210-240 g female rats were fed a high fat diet or a control diet for three weeks. At day 14, animals fed with high fat diet were injected with a single low dose of streptozotocin (35 mg/kg) and the control group rats were injected only with the vehicle. Plasmatic glucose, triglycerides and total cholesterol levels were measured at the beginning, day 14 and end of treatment. Body weight was also measured. Once the treatment was complete, rats were appropriately euthanized and then, pancreas and liver were surgically removed and frozen in liquid nitrogen. Total RNA was isolated using TRIzol reagent, treated with DNase land reversely transcribed to cDNA. Gene expression analysis was performed using SYBR Green - Real time PCR and comparative Cq method, using three reference genes. Rats fed with high fat diet and treated with streptozotocin showed higher values of plasmatic glucose (17.09 +/- 0.43 vs. 5.91 +/- 0.29 mmol/L, p < 0.01) and a minor expression of Ppargc1a versus the control group (2-fold less expressed, p < 0.05) in liver. We conclude that repression of Ppargc1a gene may be an important process in the establishment of chronic hyperglycemia, probably through deregulation of hepatic gluconeogenesis. However, further studies need to be performed in order to clarify the role of Ppargc1a deregulation in liver glucose homeostasis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study, we evaluated the effects of obesity and insulin resistance induced by a high-fat diet on prostate morphophysiology, focusing on cell proliferation, expression of androgen (AR) and estrogen receptors (ER) and proteins of the insulin signaling pathway. Adult male Wistar rats were fed a high-fat diet (20% fat) for 15 weeks, whereas control animals received a balanced diet (4% fat). Both groups were then divided and treated for 2 weeks with 1 mg/kg body weight/day of the aromatase inhibitor letrozole or vehicle only. The ventral prostate was analyzed with immunohistochemical, histopathological, stereological, and Western blotting methods. Obese rats showed insulin resistance, hyperinsulinemia, and reduced plasma testosterone levels. The incidence of prostatic intraepithelial neoplasia (PIN) was 2.7 times higher in obese rats and affected 0.4% of the gland compared with 0.1% PIN areas found in control rats. Obesity doubled cell proliferation in both prostate epithelium and stroma. AR content decreased in the prostate of obese rats and estrogen receptor beta (ER beta) increased in this group. Protein levels of insulin receptor substrate 1 and protein kinase B diminished in the obese group, whereas phosphatidylinositol 3-kinase (PI3K) increased significantly. Most structural changes observed in the prostate of obese rats normalized after letrozole treatment, except for increased stromal cell proliferation and ER beta expression, which might be associated with insulin resistance. This experimental model of obesity and insulin resistance induced by a high-fat diet increases cell proliferation in rat prostate. Such alterations are associated with decreased levels of AR and increased ER beta and PI3K proteins. This change can facilitate the establishment of proliferative lesions in rat prostate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many studies indicate that thimet oligopeptidase (EC3.4.24.15; TOP) can be implicated in the metabolism of bioactive peptides, including dynorphin 1-8, alpha-neoendorphin, beta-neoendorphin and GnRH. Furthermore, the higher levels of this peptidase are found in neuroendocrine tissue and testis. In the present study, we have evaluated the effect of acute cocaine administration in male rats on TOP specific activity and mRNA levels in prosencephalic brain areas related with the reward circuitry; ventral striatum, hippocampus, and frontal cortex. No significant differences on TOP specific activity were detected in the hippocampus and frontal cortex of cocaine treated animals compared to control vehicle group. However, a significant increase in activity was observed in the ventral striatum of cocaine treated-rats. The increase occurred in both, TOP specific activity and TOP relative mRNA amount determined by real time RT-PCR. As TOP can be implicated in the processing of many neuropeptides, and previous studies have shown that cocaine also alters the gene expression of proenkephalin and prodynorphin in the striatum, the present findings suggest that TOP changes in the brain could play important role in the balance of neuropeptide level correlated with cocaine effects. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Intracellular peptides generated by the proteasome and oligopeptidases have been suggested to function in signal transduction and to improve insulin resistance in mice fed a high-caloric diet. The aim of this study was to identify specific intracellular peptides in the adipose tissue of Wistar rats that could be associated with the physiological and therapeutic control of glucose uptake. Using semiquantitative mass spectrometry and LC/MS/MS analyses, we identified ten peptides in the epididymal adipose tissue of the Wistar rats; three of these peptides were present at increased levels in rats that were fed a high-caloric Western diet (WD) compared with rats fed a control diet (CD). The results of affinity chromatography suggested that in the cytoplasm of epididymal adipose tissue from either WD or CD rats, distinctive proteins bind to these peptides. However, despite the observed increase in the WD animals, the evaluated peptides increased insulin-stimulated glucose uptake in 3T3-L1 adipocytes treated with palmitate. Thus, intracellular peptides from the adipose tissue of Wistar rats can bind to specific proteins and facilitate insulin-induced glucose uptake in 3T3-L1 adipocytes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aims: Adrenomedullin (AM) is a peptide that displays cardiovascular protective activity. We investigated the effects of chronic ethanol consumption on arterial blood pressure, vascular reactivity to AM and the expression of AM system components in the rat mesenteric arterial bed (MAB). Methods: Male Wistar rats were treated with ethanol (20% vol/vol) for 6 weeks. Systolic, diastolic and mean arterial blood pressure were monitored in conscious rats. Vascular reactivity experiments were performed on isolated rat MAB. Matrix metalloproteinase-2 (MMP-2) levels were determined by gelatin zymography. Nitrite and nitrate generation were measured by chemiluminescence. Protein and mRNA levels of pre-pro-AM, CRLR (calcitonin receptor-like receptor) and RAMP1, 2 and 3 (receptor activity-modifying proteins) were assessed by western blot and quantitative real-time polymerase chain reaction, respectively. Results: Ethanol consumption induced hypertension and decreased the relaxation induced by AM and acetylcholine in endothelium-intact rat MAB. Phenylephrine-induced contraction was increased in endothelium-intact MAB from ethanol-treated rats. Ethanol consumption did not alter basal levels of nitrate and nitrite, nor did it affect the expression of MMP-2 or the net MMP activity in the rat MAB. Ethanol consumption increased mRNA levels of pre-pro-AM and protein levels of AM in the rat MAB. Finally, no differences in protein levels or mRNA of CRLR and RAMP1, 2 and 3 were observed after treatment with ethanol. Conclusion: Our study demonstrates that ethanol consumption increases blood pressure and the expression of AM in the vasculature and reduces the relaxation induced by this peptide in the rat MAB.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mechanisms through which electro-acupuncture (EA) and tricyclic antidepressants produce analgesia seem to be complementary: EA inhibits the transmission of noxious messages by activating supraspinal serotonergic and noradrenergic neurons that project to the spinal cord, whereas tricyclic antidepressants affect pain transmission by inhibiting the reuptake of norepinephrine and serotonin at the spinal level. This study utilized the tail-flick test and a model of post-incision pain to compare the antihyperalgesic effects of EA at frequencies of 2 or 100 Hz in rats treated with intraperitoneal or intrathecal amitriptyline (a tricyclic antidepressant). A gradual increase in the tail-flick latency (TFL) occurred during a 20-min period of EA. A strong and long-lasting reduction in post-incision hyperalgesia was observed after stimulation; the effect after 2 Hz lasting longer than after 100-Hz EA. Intraperitoneal or intrathecal amitriptyline potentiated the increase in TFL in the early moments of 2- or 100-Hz EA, and the intensity of the antihyperalgesic effect of 100-Hz EA in both the incised and non-incised paw. In contrast, it did not significantly change the intensity of the antihyperalgesic effect of 2-Hz EA. The EA-induced antihyperalgesic effects lasted longer after intraperitoneal or intrathecal amitriptyline than after saline, with this effect of amitriptyline being more evident after 100-than after 2-Hz EA. The synergetic effect of amitriptyline and EA against post-incision pain shown here may therefore represent an alternative for prolonging the efficacy of EA in the management of post-surgical clinical pain.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Increased plasma concentrations of free fatty acids (FFA) can lead to insulin resistance in skeletal muscle, impaired effects on mitochondrial function, including uncoupling of oxidative phosphorylation and decrease of endogenous antioxidant defenses. Nitric oxide (NO) is a highly diffusible gas that presents a half-life of 5-10 seconds and is involved in several physiological and pathological conditions. The effects of palmitic acid on nitric oxide (NO) production by rat skeletal muscle cells and the possible mechanism involved were investigated. Methods: Primary cultured rat skeletal muscle cells were treated with palmitic acid and NO production was assessed by nitrite measurement (Griess method) and 4,5-diaminofluorescein diacetate (DAF-2-DA) assay. Nuclear factor-kappa B (NF-kappa B) activation was evaluated by electrophoretic mobility shift assay and iNOS protein content by western blotting. Results: Palmitic acid treatment increased nitric oxide production. This effect was abolished by treatment with NOS inhibitors, L-nitro-arginine (LNA) and L-nitro-arginine methyl esther (L-NAME). NF-kappa B activation and iNOS content were increased due to palmitic acid treatment. The participation of superoxide on nitric oxide production was investigated by incubating the cells with DAF-2-DA in the presence or absence of palmitic acid, a superoxide generator system (X-XO), a mixture of NOS inhibitors and SOD-PEG (superoxide dismutase linked to polyethylene glycol). Palmitic acid and X-XO system increased NO production and this effect was abolished when cells were treated with NOS inhibitors and also with SOD-PEG. Conclusions: In summary, palmitic acid stimulates NO production in cultured skeletal muscle cells through production of superoxide, nuclear factor-kappa B activation and increase of iNOS protein content. Copyright (C) 2012 S. Karger AG, Basel